
EUROGRAPHICS 2009/ D. Ebert and J. Krüger Areas Paper

RASTeR: Simple and Efficient Terrain Rendering on the GPU
Jonas Bösch† , Prashant Goswami‡ and Renato Pajarola§

Visualization and Multimedia Lab, Department of Informatics, University of Zurich

Abstract
This paper introduces RASTeR, a GPU based LOD technique for interactive rendering of large terrains based on
a paired multi-resolution tree structure. Our approach uses regular height-data blocks and terrain independent
triangle patches, which are used to efficiently subdivide the terrain data. At run time, continuous LODs can simply
be generated by tiling a limited set of triangle patches, the indices to which are pre-computed, over height-field
blocks, thereby minimizing the amount of data to be transferred to the graphics card. RASTeR maintains a constant
frame rate through asynchronous and a priori fetching of raw or compressed elevation and texture data. The
efficiency of our method is validated by presenting experimental results on large elevation models.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Computer Graphics [I.3.3]: Picture/Image Generation—

1. Introduction

Efficient real-time visualization of very large terrain data re-
mains challenging as digital elevation models (DEMs) are
reconstructed at increasingly higher resolutions. Moreover,
in a number of visualization systems terrain rendering itself
is only one task among many to support the display of and
interaction with other data. It might even be relegated to the
background. Hence further investigations are required to de-
velop efficient algorithms that exploit the commonly avail-
able hardware as much as possible and that perform at a level
which allows combination with other data in complex visual-
ization applications. However, the most efficient algorithms
to date typically do not tend to be the solutions most easy to
use or implement, may require significant preprocessing and
often exhibit a complex binary representation of the eleva-
tion data not amenable to any other use than rendering.

Many algorithms with different trade-offs have been pro-
posed for interactive rendering of large DEMs, limiting the
3D graphics load effectively to the available computing and
graphics resources as well as display needs. To improve ren-
dering performance, an appropriate level-of-detail (LOD)
[LRC∗03] of the graphics data to be displayed is selected for
each rendered frame. The LOD is adaptive with respect to
surface features and viewing parameters and is selected such
as to achieve a targeted rendering quality and frame rate.
With current generation CPU-GPU configurations, however,
LOD rendering should not be optimized based on individual

† boesch@ifi.uzh.ch
‡ goswami@ifi.uzh.ch
§ pajarola@acm.org

geometric primitives, such as vertices or triangles, but in-
stead should take advantage of batched graphics primitives.
Failing to do so, the CPU may very easily consume too much
computational time to perform such fine-grain optimization
of the rendering load, risking to starve the fast-paced graph-
ics hardware pipeline.

We have identified the following list of desirable features
and properties of terrain rendering algorithms that should be
supported by an effective DEM visualization system.

LOD support: Multiresolution terrain model that supports
continuous adaptive LOD triangulation.

High-performance rendering: Data primitives and dis-
play units that exploit GPU accelerated rendering.

Continuous display: Asynchronous loading of data from
out of core.

Fast data retrieval: Efficient caching and prefetching ex-
ploiting the multi-level CPU and GPU memory hierarchy.

Compact storage: Effective storage model and data com-
pression for reduced memory consumption.

Direct data access: Simple and direct DEM height data ac-
cess for other non-rendering usage scenarios.

Simplicity: Easy to adapt algorithms and data structures for
widespread usability.

Fast preprocessing: Inexpensive data preparation and up-
dates.

Adaptive LOD meshing and fast rendering from out-of-core
is addressed by virtually all recent terrain rendering ap-
proaches. Compact storage and data compression is addi-
tionally supported by a number of methods as well. How-
ever, many proposed systems are fairly complex and often

c© The Eurographics Association 2009.

J. Bösch , P. Goswami & R.Pajarola / RASTeR

feature a tightly integrated triangulation and DEM storage
structure which does not support direct access to elevation
data for purposes other than rendering. Therefore, the inte-
gration of an efficient terrain rendering algorithm into an-
other system working with DEM data can require the dupli-
cation of the DEM data specifically for display purpose.

In this paper we propose a novel technique for efficient
LOD-based rendering of terrain data which departs from this
tight integration of LOD triangulation and terrain data stor-
age. It features a simple tile based data format for easy ele-
vation and texture data management. However, unlike early
tile based systems, our approach as well supports continu-
ous adaptive LOD meshing through an implicit triangula-
tion model which depends only on a lean LOD data struc-
ture. This approach allows using various DEM compression
methods, supports direct access to the DEM data through
the use of standard data and compression formats, provides
high-performance LOD rendering and as well features sim-
ple and fast preprocessing.

Our novel adaptive LOD rendering algorithm is a GPU in-
tensive solution which is based on a paired multiresolution
tree structure. We make use of two new concepts , K-patches
and M-blocks, which are the main units of a triangle bin-
tree and raster quadtree multiresolution hierarchy respec-
tively. The main contributions and advantages of our LOD
approach, which facilitate the desirable DEM visualization
features above listed are:

1. Implicit definition of a semi-regular multiresolution tri-
angulation based on triangle mesh patches.

2. Support for effective regular grid DEM data management
independent of the multiresolution triangulation.

3. Fast adaptive LOD meshing using a batched meta bintree
data structure.

4. High-performance hardware-accelerated rendering using
a GPU intensive meshing solution.

2. Related Work

Level-of-detail (LOD) based polygonal meshing and mul-
tiresolution rendering has received much attention over the
last decade [LRC∗03]. Exploiting the regular grid struc-
ture of DEMs, multiresolution restricted quadtree or bin-
tree approaches such as [SS92, LKR∗96, DWS∗97, Paj98]
have shown to generally be more performant than irreg-
ular triangle mesh (TIN) based methods as proposed in
[Pup96,DFMP96,Hop98]. Variations of the theme appeared
as 4-8 or right-triangular meshes, and efficient out-of-core
data clustering as well as effective view-dependent error
metrics have been developed (see [PG07]).

Tiled block and nested regular grid approaches are sim-
ple and efficient but often not as powerful as the restricted
quadtree or triangle bintree approaches we are focusing on
here. For further details and comparisons of the different re-
lated techniques we refer the reader to the survey [PG07].

As current graphics hardware can render many millions of
triangles per second, the CPU-GPU communication has be-
come a major bottleneck. To avoid starvation from a slow
CPU process selecting a costly fine-grain LOD mesh to be
rendered by the (faster) GPU, block-based LOD selection
and terrain rendering techniques have been proposed. RUS-
TIC [Pom00] and CABTT [Lev02] improve the ROAM ap-
proach [DWS∗97] by coarse-grained on-board caching of
static and dynamic triangle clusters respectively. Triangle
clusters or blocks also form the basic unit of LOD refinement
in [CGG∗03, LPT03, HDJ05]. These methods demonstrate
the performance benefits of coarse LOD adaptation despite
the increased number of per-frame rendered triangles.

We can observe that with current rendering rates, it is now
possible to render adaptive scenes with triangles that have
a projected screen size of one or only a few pixels. At this
point, it is no longer beneficial to carefully choose an opti-
mal fine-grain set of LOD triangles, but it is more economi-
cal to perform a quick LOD selection of patches of triangles
at a coarser grain. This basic idea is followed by the block-
based techniques outlined above. In contrast to the previ-
ous approaches, our solution introduces an implicitly defined
multiresolution triangulation of triangle mesh patches, and it
separates the DEM’s height data management from the LOD
organization, which allows for efficient multilevel grid based
out-of-core data structures.

3. RASTeR Principles

Our real-time adaptive simplification and terrain rendering
(RASTeR) system presents a novel theoretical and practical
framework for patch-oriented multiresolution triangulation
and rendering of grid-based digital terrain elevation models
(DEMs). For this, two new conceptual triangulation and data
units are defined, K-patches and M-blocks.

3.1. Adaptive Triangulation

3.1.1. K-Patches

A semi-regular restricted quadtree, bintree or 4-8-mesh LOD
triangulation is given by a manifold mesh of conforming
isosceles triangles such that adjacent triangles differ by at
most one level in the LOD hierarchy. The hierarchical LOD
triangle mesh representation can be viewed as a binary tree,
recursively splitting isosceles triangles at their longest edge
(see also Figures 3 and 5(b)). Cracks between adjacent trian-
gles of different LODs are avoided by always refining both
triangles sharing the longest edge that is split. This may
cause force-propagated splits to neighboring triangles and
results in neighboring LOD triangles differing by at most
one level [SS92, LKR∗96, DWS∗97, Paj98].

The concept of using triangle clusters for terrain rendering
has been introduced in [Pom00, Lev02, CGG∗03, LPT03].
Along the lines of [HDJ05] we define regularly triangulated
clusters with a constant number K of vertices along each

c© The Eurographics Association 2009.

J. Bösch , P. Goswami & R.Pajarola / RASTeR

triangle-patch edge, see also Figure 1. As we will see later
in Section 4, however, our K-patches are never explicitly
stored, and theoretically K could be chosen differently each
time at startup of the visualization application (but should be
a power of two plus one).

3-patch 5-patch 9-patch

Figure 1: Triangle K-patches for different sizes of K.

Following the constraints on the bintree triangle subdivision,
an adaptive batched LOD triangulation can be achieved by
selectively splitting the K-patches (see also Figure 5(b)). Do-
ing this recursively starting from a coarse set of (two) initial
K-patches, the resulting set of variably sized K-patches can
be interpreted as macro triangles of a batched meta bintree,
and thus could be arranged in a triangle strip sequence. In
fact, also the interior triangulation of a K-patch can be rep-
resented by a single triangle strip, see also [PG07].

The orientation of a K-patch is always an instance of one
of eight basic isosceles triangle types, as shown in Figure 2.
According to the bintree multiresolution model, a K-patch
can be subdivided yielding two child K-patches whose type
is dependent only on the parent, as shown in Figure 3.

1

3

20

4 5

67

Figure 2: The eight basic orientations of K-patch types.

0

1

2

3

4 7

5 4

56

7 6

4 0 1

5 1 2

6 2 3

7 3 0

Figure 3: K-patch parent-child orientation transition cases.

Note that each K-patch is defined to have an associated ori-
entation, indicated in Figure 2. This direction specifies the
numbering of the K-patch’s vertices. Also the two children
of a K-patch split are defined to be numbered in the order
of the parent direction. That is, the child starting at the first
vertex is referred to as child 0, the other as child 1.

K-Patches are organized in a meta bintree so that each K-
patch represents a node, similar as in [CGG∗03] (see also
Figure 5). Since K-patches of types 0,1,2,3 share the same
vertex spacing as their children, the resolution is doubled
for every two consecutive levels in the meta bintree, as can
also be seen in Figure 4(a). This is important to note for the
relationship of K-patches and M-blocks, as discussed below.
Cracks between adjacent K-patches of different LODs are
avoided by the splitting constraints outlined at the beginning
of this section. An elegant method to avoid forced splits is
to saturate the LOD error metric [Paj98, OR99, Ger99]. On
our meta bintree of triangle K-patches, the saturated view-
dependent error metric is implemented as in [LP01, Ger03].

3.1.2. M-Blocks

An M-block is a square block of a regular grid of height
sample data – and possibly other attributes such as surface
normal – stored in a file on disk. All M-blocks are defined to
be of equal size, that is, they have the same number M×M
of vertices with M = 2m + 1, being a power of two plus one
for consistent overlap between blocks. M-blocks are orga-
nized in a quadtree hierarchy, with each M-block represent-
ing a node, also storing its scale factor and bounding box.
In this reduced resolution pyramid [Wil83], the resolution of
the terrain changes by a factor of two between levels.

Currently, the M-block data is tested both in uncompressed
and reversibly compressed JPEG2000 format, but other
compression methods could be used. Decompression of the
M-block data can be done asynchronously by streaming the
data into OpenGL Pixel Buffer Objects, which are a superset
of the Vertex Buffer Objects (VBO) normally used to store
M-blocks on the GPU.

3.1.3. M-Block – K-Patch relationship

M-blocks and K-patches form two separate but tightly con-
nected hierarchies, and thus each meta bintree node stores
a pointer to the associated quadtree node, see also Fig-
ure 5. Exploiting this relationship means that it is possible to
clearly separate the LOD selection from the rendering, both
conceptually as well as in the implementation. The LOD se-
lection is performed on the K-patch bintree, considering a K-
patch as a triangle of triangles, while rendering and resource
management are done on the M-block quadtree, considering
K-Patches as triangle strips over M-block vertex buffers.

Given M being a small multiple f of K, we note that within a
single square M-block we can form 2 · f different LOD levels
of K-patch triangulations. Furthermore, the K-patch based

c© The Eurographics Association 2009.

J. Bösch , P. Goswami & R.Pajarola / RASTeR

triangulation is aligned with M-block boundaries, at vary-
ing resolutions. Hence any of the basic K-patch types can
be placed at a fixed number of positions and scales within
a given M-block. Figure 4(b) shows the possible scalings
and alignments for a K-patch of type 1 in an M-block with
M = 2K. Since the combinatorial possibilities of scaling and
placing the basic K-patch triangle patches within an M-block
of given size are limited, we can precompute these configu-
rations and index them in a table.

do
ub

lin
g o

f re
so

lut
ion

(a)

K-patch K-patch

K-patchK-patch

K-patch

(b)

Figure 4: (a) Every two levels of K-patch subdivision the
resolution doubles. (b) Placings of a type-1 K-patch in an
M-block of size M = 2K.

3.2. Terrain Level-of-Detail

As error metric we adopt a saturated view dependent defini-
tion as in [LP01, Ger03]. It is based on a basic object space
error, the difference in height of the refinement vertex to
the midpoint of the longest edge of a triangle. However, in-
stead of defining the LOD error on each vertex, which would
be wasteful considering the batch-based approach taken in
this algorithm, it is only defined for the K-patch refinement
points. The correctness of the error is still guaranteed for
K-patches of any size because of the saturation property. In
fact, by changing the size of a K-patch, the granularity of
the LOD selection can be adjusted, but other factors such as
preferred (GPU-optimal) rendering batch size usually take
precedence for choosing K.

A meta bintree is used for adaptive multiresolution triangu-
lation. In this binary tree, each node corresponds to a triangle
K-patch of a certain type and scale, and it stores the LOD er-
ror of the K-patch’s refinement vertex. The node furthermore
maintains a pointer to the corresponding M-block of height
values and the K-patch’s offset within it.

3.3. GPU Meshing

We note that for a given K-patch type, the indices of its
triangle-strip vertices relative to the corresponding M-block
are invariant up to a scale factor and offset of the K-patch
within the M-block, see also Figure 4(b). Therefore, we ini-
tialize the set of index arrays for all K-patch types using
OpenGL Element Array Buffers on the GPU to be used for
indirect indexing into the M-block DEM height data. Given

meta bintreeM-block quadtree

(a) (b)

Figure 5: M-block height-field quadtree nodes (a) can cor-
respond to different K-patch meta bintree nodes (b) depend-
ing on the selected LOD triangulation. Elevation data in the
M-block quadtree is separated from the triangle mesh con-
nectivity in the K-patch meta bintree.

the M-Block’s base or anchor point p0, K-patch offset o f f
and scale factor s, the vertices pi of the the patch’s triangle
strip in 2D can be generated on a shader as follows:

pi = p0 +o f f +(s · xi,s · yi), (1)

where xi and yi are the indices of the i-th vertex in the tri-
angle strip of a K-patch, relative to the patch’s start vertex.
Correspondingly, the DEM’s height value is fetched from the
current M-block heigh-mapt at entry o f f +(s · xi,s · yi).

As outlined above, each triangle K-patch in the LOD meta
bintree is associated with an M-block. Hence for a given
LOD selection a number of M-blocks are active, and each
may be referenced by one or more non-overlapping triangle
K-patches. The active M-blocks are dynamically cached as
VBOs on the GPU and bound at run-time. Rendering a K-
patch triangle strip corresponds to identifying the K-patch
type and sending its index, scale and base offset to the GPU.

4. RASTeR Construction

4.1. DEM Preprocessing

In the preprocessing step, the source DEM data has to be
parsed and converted into a simple intermediate represen-
tation. This representation consists of standard grid-digital
terrain height-field data plus additional multiresolution LOD
information. The preprocessing steps are quite simple and
can be carried out in a short time.

For each M-block, the basic elevation data is maintained in
a simple grid-digital height-field format. Besides the altitude

c© The Eurographics Association 2009.

J. Bösch , P. Goswami & R.Pajarola / RASTeR

value for each height sample, another attribute that can (op-
tionally) be stored is the surface normal. The data of each
M-block can easily be stored in a separate file as it corre-
sponds to the basic unit of DEM data access from disk. In
fact, to further optimize I/O performance, multiple M-blocks
could be aggregated into larger blocks of height-field data
with generation of multiple resolutions of M-blocks on the
fly from the larger aggregated blocks on disk.

This simple DEM data management in form of height-field
grids allows other applications or functions to directly access
the elevation data for other purposes than display without
having to extract it from a more complex and integrated hier-
archical multiresolution triangle mesh representation. Since
M-blocks or larger aggregated height-field data blocks are
not restricted to a particular grid-digital data format, vari-
ous source formats can be supported. Hence to save disk
storage M-blocks could be loaded or extracted from com-
pressed height-field data. JPEG2000 and other simple com-
pression methods have been implemented in the RASTeR
system as a proof of concept. However, to avoid disconti-
nuities at block boundaries from different lossy compres-
sion in adjacent blocks, boundary consistency must be en-
forced through modified compression, explicit storage of the
boundary samples, or on-the-fly adjustments at runtime. In
general, a simple M-block access layer can support various
underlying binary and compressed height-field data formats.

The complete K-patch information consists of data-
independent triangle-strip index configurations, as well as
of the meta bintree with per-node LOD error metric and M-
block attributes. The geometric object-space error is com-
puted for each height-field vertex and saturated bottom-up.
Each meta bintree node, corresponding to a particular K-
patch triangle type, stores the saturated LOD error of its re-
finement vertex, see also Section 3.2.

4.2. K-Patch Index Buffers

Each K-patch type of Figure 2 is represented by an array
of 2D indices xi,yi given on a canonical grid, correspond-
ing to its indexed triangle strip. For example, a 3-patch of
type 4 corresponds to the triangle strip with indices (xi,yi) =
{(0,0),(0,1),(1,1),(0,2),(1,1),(1,2),(2,2)}. Given K, the
necessary eight K-patch triangle strip index arrays are ini-
tialized during system start-up. Hence at run-time K-patches
can be rendered by sending their indices xi,yi as triangle strip
coordinates to the GPU and constructing their world coordi-
nates according to (1) in the vertex shader. However, this also
requires the shader to perform a texture lookup to get the z
value and normal vector from the height-map. For that, the
height-map of the M-block must be bound as vertex texture.

To avoid coordinate construction and texture lookups in the
vertex shader, index buffers for K-patch triangle strips can
explicitly be precomputed, and the M-block height-map is
then interpreted as a vertex buffer. An index buffer has to
be defined for each possible K-patch type, scale and offset

configuration (see also Figure 4(b)). Depending on the ratio
of K to M this results in a fixed but possibly large number of
explicit index buffers, but it is still independent of the actual
height-data and must only be performed once for a certain K
and M combination. At run-time, the M-block height-map is
thus bound as a VBO and a triangle K-patch is rendered as
an indexed triangle strip. In the current implementation and
experiments, RASTeR operates with M = 2K and explicit
index buffers for K-patches.

5. RASTeR System

To perform fast view-dependent LOD rendering, RASTeR
dynamically adapts the selection of triangle K-patches in the
meta bintree for each rendered frame. As we outline below,
several error factors can be reduced to a single term which
gives us the selection factor for a K-patch node. A traver-
sal of the meta binary tree selects all nodes that have to be
rendered for the current frame, and their corresponding M-
Blocks are activated. In the following, the dynamic run-time
behavior of the system is discussed and a diagram of its prin-
cipal components is given in Figure 6.

texture
images

DEM
height
data

texture
loader

loader thread

load
requests
queue

texture
cache

DEM
cache

interaction handler

render thread

GPU

height
maps

texture
images

shadersk-patch
table

LOD manager

meta-
bintree

user
input

pre-fetcher
threadDEM

loader

texture
fetcher
thread

render queue

shaders

Figure 6: RASTeR system and resource management.

5.1. Level-of-Detail Selection

At run-time, the K-patch bintree is traversed by the LOD
manager in the rendering thread, and LOD selection is per-
formed on a per K-patch basis. After view-frustum culling,

c© The Eurographics Association 2009.

J. Bösch , P. Goswami & R.Pajarola / RASTeR

visible K-patch nodes are selected based on their satu-
rated view-dependent octagon error metric [Ger03] to avoid
cracks and T-junctions in the terrain surface. Given the focal
plane parameter, the object-space error of each K-Patch and
the octagon distance, the final error can quickly be computed
and compared to a given error tolerance, see also [LP01].
The error tolerance is either given by the user or adjusted to
keep an interactive framerate. Traversal stops when the first
node with an error below the tolerance is reached. The so
selected K-patch nodes activate their corresponding height-
field data M-blocks. The system’s render queue then renders
the associated K-Patches of all active M-blocks.

5.2. Texture Selection

To match the K-patch and M-block structures, textures are
managed in square units and organized in a texture mipmap
pyramid [Wil83]. Each texture unit can be compressed us-
ing GPU compression to almost 1/6 of its original size. The
texture resolution used for one or more related K-patches is
chosen depending on the distance from the camera. But to
limit excessive use of high-resolution textures, due to trian-
gle patches spanning a wide depth, we additionally constrain
the texture mipmap levels such that only a certain percentage
is rendered at high(est) resolution near the viewpoint.

5.3. Resource Management

The meta bintree is sufficiently small in size compared to the
DEM height field data of the M-blocks since it only stores
the saturated octagon error metric parameters and K-patch
attributes with each node. Hence it can typically be loaded
into main memory, or accessed synchronously (on-demand)
via memory mapping from out-of-core. Other K-patch data
does not have to be maintained.

Therefore, the only resources which have to be actively man-
aged in the sense of loading, caching and prefetching are
the data intensive grid-digital height-field M-blocks and tex-
tures. The height-map data of currently activated M-blocks
is loaded and stored in GPU memory, and other recently
used M-blocks are cached in main memory. GPU memory is
freed if M-blocks are not referenced from any K-patches for
some time, and height data is unloaded from system mem-
ory as well if applicable. In a similar way texture images are
dynamically loaded and cached in main and GPU memory
as illustrated in Figure 6. Dyanamic loading, caching and
prefetching is discussed below in Section 5.5.

5.4. Rendering

During rendering, the system iterates over the render queue
of activated M-blocks and their K-patches. For each M-
block, several draw-elements calls are issued on its vertex
buffer for the selected LOD triangle K-patches associated
with it. The M-block’s vertex buffer consists only of height
(altitude) and surface normal data, since the x and y (long-
/latitude) coordinates are computed in the vertex shader ac-
cording to K-patch type, base vertex and spacing attributes.

During LOD selection, K-patches are grouped by their M-
block usage such that the corresponding height-field vertex
buffer can be bound once for all corresponding K-patches.
The K-patches’ index buffers are already available on the
GPU as they are static, and simply the index buffers of the
selected K-patches must be activated. Given the patch base
offset in world coordinates, calculation of the vertex coordi-
nates can be done from the given parameter data.

5.5. Asynchronous and a priori Fetchings

In interactive rendering, the viewing parameters generally
vary smoothly over time and thus LOD changes between
frames happen gradually and predictively. In case of unavail-
ability of a new LOD node, and to avoid synchronous load-
ing of its M-block data from out-of-core, the LOD change
may be delayed to keep the frame rate constant until the new
LOD data has been loaded from disk. The requested higher
or lower LOD details, which consist of (compressed) height-
field M-blocks and their corresponding color textures, are
processed asynchronously from a queue by separate threads.
We refer to these LOD updates as asynchronous fetches.

To support the above strategy we perform incremental
frame-to-frame LOD updates as follows. The state of the
currently selected and rendered LOD can be viewed as a
front through the K-patch meta bintree, as indicated in Fig-
ure 7. A change in LOD then consists of an incremental up-
date of that front, down- or upwards for LOD refinement or
coarsening respectively. With respect to asserting the con-
sistency of the LOD triangulation, incremental K-patch re-
finement or coarsening is only performed as long as the res-
olution of the neighboring patches can be matched without
introducing cracks. In accordance with the triangulation de-
fined in Section 3.1 neighboring K-patch nodes can thus dif-
fer by at most one level.

Hence the actual new updated front constitutes of those
nodes from the current and the targeted fronts which are al-
ready available in GPU or main memory as well as closest
to the targeted front. If the M-block data for targeted nodes
is not available then an appropriate request is pushed onto
the asynchronous load queue. Moreover, the corresponding
nodes from the current front which can thus not be replaced
are retained in the render queue instead.

Whenever a K-patch causes an M-block to be pushed onto
the load-requests queue, its texture and texture resolution
are also considered and fetched if necessary. While uncom-
pressed M-blocks can directly be loaded into memory, com-
pressed formats require on-the-fly decompression.

In the case of a smooth user navigation, asynchronous
fetches with delayed LOD display can satisfy almost any
targeted updates with little latency. However, abrupt changes
in navigation direction, e.g. through sharp rotations, cannot
always be handled that way (e.g. node l in Figure 7). There-
fore, we make use of the predictive nature of interactive nav-
igation via spatial coherence and prefetch M-blocks that fall

c© The Eurographics Association 2009.

J. Bösch , P. Goswami & R.Pajarola / RASTeR

b

b

c

c

e,f

d

g

g

h

h

i

j,k

∅

l

a

∅

b c e,f g h i ∅∅

available nodes
asynchronous fetch requests

current front

targeted front

rendered front

a b c d

fe

i

kjhg

l

root of K-patch meta bintree

Figure 7: Asynchronous fetching.

within an extended view frustum via the same asynchronous
loading request queue.

Eventually, situations may still occur where no existing LOD
data can directly be used without introducing cracks , holes
and artifacts in the terrain display. In these rare cases a syn-
chronous fetch must be executed which loads the required
data directly for immediate rendering.

6. Experimental Results

The RASTeR system was implemented for Mac OS X and
GNU/Linux in C++, OpenGL and using the OpenGL Shad-
ing Language (GLSL) for programmable shaders. We have
used an NVIDIA GeForce 8800 GT card and 2.66 GHz Intel
Xeon in our experiments. We have tested RASTeR on differ-
ent DEMs and the results are summarized in Table 1.

In our tests, the height was encoded as 16bit unsigned inte-
ger, and the normal was packed into a 16bit unsigned integer
as well, using 6 bits for the x,y and 4 bits for the z compo-
nents. As long as the M-block to K-patch size ratio is small,
i.e. 2, a single index buffer can be used to store all indices
for all explicit different configurations of K-patches within
an M-block. 16bit unsigned integers can be used to encode
all the indices in that case. Using 129×129 sized M-blocks
and (K = 65)-patches has shown to be a good choice for the
size of the two basic DEM data and triangulation units.

As demonstrated in Table 1, RASTeR achieves excellent per-
formance for interactive renderings as shown in Figures 8. In
Figure 9(a) we present a detailed performance analysis, ob-
tained from rendering the Puget Sound data set. As can be
seen, the interactivity and triangle rendering throughput are

excellent, achieving a sustained rate of about 200M triangles
or 100 frames per second, also compared to previous state-
of-the-art methods such as [GMC∗06]. Figure 9(b) shows
the corresponding data complexity. Note that each K-patch
corresponds to an entire triangle strip being rendered.

Figure 9(c) shows the low overhead, that is the ratio of the
LOD data structure traversal and loading cost as percent-
age of to the overall rendering time, which is typically be-
low 10%. Finally, Figure 9(d) strongly supports our sys-
tem design by demonstrating that the asynchronous DEM
data fetches, which are even generally low, prevail over the
very few synchronous fetches necessary for unexpected and
abrupt view changes.

Data Set Resolution Texture Uncompressed Compressed
GB Fps MTps Fps MTps

Ofenpass 4K x 3K 0.111 109 251 105 246
Zurich 2K x 2K 3.38 131 241 130 237

Puget Sound 4K x 4K 0.7328 113 249 109 238
Puget Sound 16K x 16k 0.6961 98 223 95 218

Table 1: Rendering performance for pixel error = 2 in
frames (Fps) and million triangles per second (MTps). Tex-
ture size given after processing and compression.

7. Conclusion

In this paper we have demonstrated that a simple data lay-
out and patch-based multiresolution triangulation model can
achieve very high rendering performance. The benefits of
the proposed solution are the separation of the triangula-
tion model from the actual DEM height-field data manage-
ment. This allows an efficient, multi-scale and regular block
based representation of the elevation data in conjunction
with an adaptive patch-based bintree triangulation model,
that achieves the desired features outlined in the introduc-
tion.

Future work includes evaluations of the sweet spot for the K-
patch and M-block size parameters as well as the analysis of
possible aliasing problems due to mapping of dense triangles
onto a limited number of pixels on screen.

Acknowledgements

We would like to thank the Remote Sensing Lab of the
University of Zurich for the Ofenpass DEM data of the
Swiss National Park, as well as the Large Geometric Models
Archive at GeorgiaTech for the Puget Sound data set. This
work was partially supported by the Swiss National Science
Foundation Grant 200021-111746/1.

References

[CGG∗03] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-
TON F., PONCHIO F., SCOPIGNO R.: BDAM - batched dynamic
adaptive meshes for high performance terrain visualization. In
Proceedings EUROGRAPHICS (2003), pp. 505–514. also in
Computer Graphics Forum 22(3).

c© The Eurographics Association 2009.

J. Bösch , P. Goswami & R.Pajarola / RASTeR

(a) Zurich (DHM25 c© swisstopo) (b) Ofenpass (c© RSL Univ. of Zurich) (c) Puget Sound

Figure 8: Example screenshots of interactive terrain rendering of different DEMs.

0

75

150

225

300

375

0 1000 2000 3000 4000 5000 6000 7000 8000

p
e
r
fo

r
m

a
n

c
e
[
u

n
it

]

rendered frame number

Mtriangles/sec

frames/sec

(a)

0

400

800

1200

1600

2000

0 1000 2000 3000 4000 5000 6000 7000 8000

r
e
n

d
e
r
e
d

 s
c
e
n

e
 c

o
m

p
le

x
it

y
[
u

n
it

]

rendered frame number

KPatches/frame

MBlocks/frame

MTexels/frame

(b)

0

5

10

15

20

25

0 1000 2000 3000 4000 5000 6000 7000 8000

R
A

S
T
e
R

 o
v
e
r
h

e
a
d

[
%

]

rendered frame number

(c)

0

4

8

12

16

20

0 472 737 1105 1503 2944 4861 4915 4964 5052 5088 5133 5162 6201 7860 7980 8000

n
u

m
b

e
r
 o

f
 M

-
B

lo
c
k
s
 f

e
t
c
h

e
d

rendered frame number

Synchronous

Asynchronous

(d)

Figure 9: (a) Rendering speed. (b) Rendering complexity. (c) RASTeR overhead. (d) Asynchronous vs. synchronous fetches.

[DFMP96] DE FLORIANI L., MARZANO P., PUPPO E.: Mul-
tiresolution models for topographic surface description. The Vi-
sual Computer 12, 7 (August 1996), 317–345.

[DWS∗97] DUCHAINEAU M., WOLINSKY M., SIGETI D. E.,
MILLER M. C., ALDRICH C., MINEEV-WEINSTEIN M. B.:
ROAMing terrain: Real-time optimally adapting meshes. In Pro-
ceedings IEEE Visualization (1997), Computer Society Press,
pp. 81–88.

[Ger99] GERSTNER T.: Multiresolution Compression and Visual-
ization of Global Topographic Data. Tech. Rep. 29, Institut für
Angewandte Mathematik, Universität Bonn, 1999. to appear in
Geoinformatica 2001.

[Ger03] GERSTNER T.: Top-Down View-Dependent Terrain Tri-
angulation using the Octagon Metric. Tech. rep., Institute of Ap-
plied Mathematics, University of Bonn, 2003.

[GMC∗06] GOBBETTI E., MARTON F., CIGNONI P.,
BENEDETTO M. D., GANOVELLI F.: C-BDAM – com-
pressed batched dynamic adaptive meshes for terrain rendering.
Computer Graphics Forum 25, 3 (September 2006), 333–342.

[HDJ05] HWA L. M., DUCHAINEAU M. A., JOY K. I.: Real-
time optimal adaptation for planetary geometry and texture: 4-8
tile hierarchies. IEEE Transactions on Visualization and Com-
puter Graphics 11, 4 (2005), 355–368.

[Hop98] HOPPE H.: Smooth view-dependent level-of-detail con-
trol and its application to terrain rendering. In Proceedings IEEE
Visualization (1998), Computer Society Press, pp. 35–42.

[Lev02] LEVENBERG J.: Fast view-dependent level-of-detail ren-
dering using cached geometry. In Proceedings IEEE Visualiza-
tion (2002), Computer Society Press, pp. 259–266.

[LKR∗96] LINDSTROM P., KOLLER D., RIBARSKY W.,
HODGES L. F., FAUST N., TURNER G. A.: Real-time, con-
tinuous level of detail rendering of height fields. In Proceedings
ACM SIGGRAPH (1996), pp. 109–118.

[LP01] LINDSTROM P., PASCUCCI V.: Visualization of large
terrains made easy. In Proceedings IEEE Visualization (2001),
Computer Society Press, pp. 363–370.

[LPT03] LARIO R., PAJAROLA R., TIRADO F.: Hyperblock-
QuadTIN: Hyper-block quadtree based triangulated irregular net-
works. In Proceedings IASTED Invernational Conference on
Visualization, Imaging and Image Processing (VIIP) (2003),
pp. 733–738.

[LRC∗03] LUEBKE D., REDDY M., COHEN J. D., VARSHNEY
A., WATSON B., HUEBNER R.: Level of Detail for 3D Graphics.
Morgan Kaufmann Publishers, San Francisco, California, 2003.

[OR99] OHLBERGER M., RUMPF M.: Adaptive projection op-
erators in multiresolution scientific visualization. IEEE Trans-
actions on Visualization and Computer Graphics 5, 1 (January-
March 1999), 74–93.

[Paj98] PAJAROLA R.: Large scale terrain visualization using the
restricted quadtree triangulation. In Proceedings IEEE Visualiza-
tion (1998), pp. 19–26,515.

[PG07] PAJAROLA R., GOBBETTI E.: Survey on semi-regular
multiresolution models for interactive terrain rendering. The Vi-
sual Computer 23, 8 (2007), 583–605.

[Pom00] POMERANZ A. A.: ROAM Using Surface Triangle Clus-
ters (RUSTiC). Master’s thesis, University of California at Davis,
2000.

[Pup96] PUPPO E.: Variable resolution terrain surfaces. In Pro-
ceedings of the 8th Canadian Conference on Computational Ge-
ometry (1996), pp. 202–210.

[SS92] SIVAN R., SAMET H.: Algorithms for constructing
quadtree surface maps. In Proceedings 5th International Sym-
posium on Spatial Data Handling (August 1992), pp. 361–370.

[Wil83] WILLIAMS L.: Pyramidal parametrics. In Proceedings
ACM SIGGRAPH (1983), ACM SIGGRAPH, pp. 1–11.

c© The Eurographics Association 2009.

