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Abstract: We propose a new approach for the interactive renderingrgélaighly
detailed scenes. Itis based on a new representation anitlatgdor large and detailed
volume data, especially well suited to cases where detadrisentrated at the interface
between free space and clusters of density. This is fornstéthe case with cloudy
sky, landscape, as well as data currently represented asthypures or volumetric
textures. Existing approaches do not ef ciently store, aggand render such data,
especially at high resolution and over large extents.

Our method is based on a dynamic generalized octree with ivhPped 3D texture
bricks in its leaves. Data is stored only for visible regiahshe current viewpoint, at
the appropriate resolution. Since our target scenes contany sparse opaque clus-
ters, this maintains low memory and bandwidth consumptiging exploration. Ray-
marching allows to quickly stops when reaching opaque regjiéd\so, we ef ciently
skip areas of constant density. A key originality of our altfon is that it directly relies
on the ray-marcher to detect missing data. The march aloay egy in every pixel
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2 Crassin & Neyret & Lefebvre

may be interrupted while data is generated or loaded. Itdanhieves interactive per-
formance on very large volume data sets. Both our data steietind algorithm are
well- tted to modern GPUs.

We demonstrate our approach with several typical situatierploration of a 3D scan
(8192 resolution), of hypertextured meshes (1638i4tual resolution), and of a Sier-
pinski sponge (&M? virtual resolution), all rendered at an interactive frarage of 10
to 20 fps and tting the limited GPU memory budget.

Key-words: real-time rendering, volumes, GPU, hypertextures, Vigjbray-tracing
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Résumé : Nous proposons une nouvelle approche pour le rendu iniledacscenes

vastes et extrémement détaillées. Cette approche esthasdéee nouvelle

représentation et de nouveaux algorithmes adaptés a cedyjmnées. Cette représentation
est spécialement adaptée aux cas ou les détails sont cascsut une interface entre

de I'espace vide et des zones denses, par exemple pensel noageux, un paysage,

ou encore des matériaux actuellement représentées aveartiessde relief, des hypertextures
ou des textures volumiques. Les approches existantes neefient pas de stocker,

gérer et rendre ef cacement de telles données, partiaiént a hautes résolutions ou

sur de vastes étendues.

Notre méthode est basée sur I'utilisation d'un octree galis&r stockant dans es feuilles
des briques de textures 3D mip-mappées. Seules sont sgdeksé@onnées des régions
visibles pour le point de vue courant, a la résolution appéep Du fait que les scénes
gui nous intéressent sont composées de groupements deentgiarjue éparses, ceci
permet de maintenir une consommation mémoire ainsi qu'aiiief utilisation de la
bande passante pendant I'exploration. L'utilisation dalgorithme de rendu de type
ray-marching permet d'arréter rapidement le rendu lorsicargg région opaque est
atteinte. De plus, notre méthode permet de parcourir eéoaent les régions de densité
constante.

Une contribution importante de notre algorithme est le daiil utilise directement

le ray-marching pour déterminer les données nécessaitgsipgoint de vue donné.
De plus, notre méthode permet d'atteindre des performantasctives pour de trés
larges volumes de données, notre structure de donnéebausgue que notre algorithme
tirant parti intensivement des GPU modernes.

Nous illustrons notre approche dans différentes situatigpiques: I'exploration de
données scannées 3D (résolution &198e maillages hyper-texturés (résolution virtuelle
16384), et d'une éponge de Sierpinski (résolution virtuelié\8®), le tout rendu & une
cadence interactif de 10 & 20 FPS et se contentant de la tumitée de mémoire
présente sur le GPU.

Mots-clés : rendu temps réel, volumes, GPU, hypertextures, visibiigg-tracing
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1 Introduction

Special effects and games are now required to model andreoelees covering very
large areas and containing increasing amounts of detaitpdcial effects, volume rep-
resentations are often considered for complex fuzzy dath as clouds, spray, smoke
and foam, as seen in recent moviegy(, XXX, Lords of the Ring, the day after tomor-
row, Pirates of the Caribbean). These are known under the generic nameael
enginedKis98,/BTG03| KapOg, Kap(3.KHO5]. Sometimes, volumesaise used for
complex shapes such as vegetation, fur and pseudo—sﬂlcfataéls.

Our goal is to improve ef ciency of this approach in the coditef special effects (at
least for preview), and to bring it to the context of intenaetrendering: Our works
aims at making volume rendering a rich and convenient primfor very detailed CG
scenes.

The main issue with volume data is that it usually requirkst af memorythuslimit-

ing the scene extent and the resolution of detaitghestreaming of datdrom larger
and slower memory units. This is even worse for real-timdiegtions since the GPU
memory budget is a lot more limited than for software imagedpction. The transfer
time of this amount of data (640MB on modern GPUs) from the @REady prevents
real-time performance so brute-force streaming is not atisol. In addition, theen-
dering of volumes is costijue to the amount of voxels to visit, shade and blend. This
strongly limits its use in real-time applications as wellfasthe previsualization and
adjustment of volume-based effects in production. Deditaepresentations such as
bidirectional textures, hypertextures or volumetric tegs embed explicit or implicit
volume data within a limited interface layer upon objectdate. Current approaches
achieve ef cient storage and rendering under the conditi@t this volume layer re-
mains small on the screend.,no zooming).

Still, in usual scenedetails are mostly concentrated some locations such as inter-
faces between dense and clear regions (e.g. cloud, watdsdape, fur). For a lot of
pseudo-surfacefight rays stop quicklyonce inside the dense body. Alsmly visible
details are needefbr a given frame, at no more than the suf cient resolutiba., our
target scenes have lot of empty space, core regions, lot@fision, and mostly the
pseudo-surface of objects is seen

We propose a new representation and rendering scheme takiagtage of these prop-
erties. Our approach manages and renders such volume datgeatesolutions with
interactive frame rates, allowing to zoom and explore thtodetails. This is achieved
through lazy and adaptive data transfer and rendering: tegrdae on the y the min-
imal necessary data to consider, accounting for empty oiflequency regions, level
of detail (LOD) and occlusion information.

Our contributions are as follows:
A new adaptive spatial data structure for voxel data, algnef cient dynamic
update and traversal. It is especially well tted to the exption of large detailed
scenes characterized by clusters of density, a frequeaticdsG.

A new ray-marching algorithm that can be seamlessly inpged and restarted
whenever new data must be loaded, over the course of a siaghef It is designed
for ef cientimplementation on SIMD architectures.

1A pseudo-surface is an interface which resemble a surfadistaince, but which appears to be locally
non-height eld, non-connected or non-opaque at close vieg.,fur, tree foliage, cumulus clouds...

INRIA



Interactive GigaVoxels 5

A new way to take advantage of occlusions without compleicgated determina-
tion of visibility.

Together, these contributions result in a new frameworkiriteractive rendering of
large detailed volume scenes. This includes the manageshbigh amounts of mul-
tiscale details, on-demand generation, procedural geoerand data ampli cation.
Our framework is is highly inspired by voxel engine tools dige special effect pro-
duction: it brings to interactive time features which arekn to be especially time
and memory consuming even in the scope of production. A kelygsuccess of our
framework is the early design choice to focus on scenes Wisters of densities, a
case very common in Computer Graphics.

2 Previous Work

Voxels

Besides classical volume rendering for scienti c visualian, special effects compa-
nies such a®igital domain, Cinesit@r Rhythm 'n Huesiow massively rely owvoxel
enginegKis98/BTGO3, Kap0Z, Kap(3, KHO5] to render very complegrses. Clouds,
smoke, foam and even sometimes non-fuzzy but extremelyletttgeometric data
(e.g..the boat ofPirates of the Caribbegrare all captured with volume rendering. For
instance, modeled or scanned meshes, hypertextures ohgagioles €.g.,avalanche
of XXX), sprays and gaseous data are all converted into voxel éfdacbrendering,
possiblyampli ed with volume details €.g.,the river of LOTR). The scene size and
resolution of details is so large that voxels sometimes tdewen t in the computer
memory. In addition to storage, the rendering of such datdsis extremely costly,
even for preview.

Apart from applications based on full grids of voxels, vascspecialized explicit or
implicit volume-based representations have been proptsbdne t from the visual
complexity allowed by volumes: Fur, vegetation, pseuddases, etc. To avoid the
issues mentioned in introduction, they often rely on thesagdion that the volume
data is embedded in a layer at the interface between emptye sl lled space. Hy-
pertextures [PHE9] evaluate the procedural opacity on thevhich trades memory
for computation cost. Volumetric textures and shell mapg$8B,Ney98, PBFJ05] rely
on a tiling of a volume pattern within the layer. Bidirectaltextures[[TZL02] store
the local aspect for all view and light conditions. Some nt@xtensions of relief
maps are indeed ray-marchers [BDD6b] and rely on optintimattructures [CS94] to
accelerate empty space traversal.

In addition, volume data structures have also been useddodemon volume data:
e.g., texture information along a surface without the needfplanar parameteriza-
tion [BDOZ,[DGPROPZ, LSKO6,LHNO5H/LHO®6]. In particular, thérick mapsdata
structure of Per Christensén [CB04] captures surfaceiana@ data in an octree stor-
ing 3D volumes in its nodes.

Among all these approaches, several are well adapted to @Rigrovide interactive
to real-time performance [DN04, LHNOSb, LH06, BD0O6b, BDOERO7].

Work has also been done to bring traditional volume rendgdneal-time: factorized
rendering using slicind [LL94], compression of empty spf€E02], ray-marching
algorithms adapted to modern GPUs [Sch05]. Performaneesiarently still low,

and the volume that can be managed is seriously limited bytPd memory budget
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6 Crassin & Neyret & Lefebvre

(typically 512, or 384 MB). Slices and rays have opposite advantages andecks.
Accumulating volume slices yields a lot of overdraw, and euvous hidden voxels are
rasterized anyway. Conversely, ray-casters allow to saspdl stop each ray at differ-
ent depths but they are more complex and less data-cohsoahit the occurrence of
GPU ray-casters has not yet reached its promises in ternesfofrmances. In[Sch05],
the ray-traversal is done on the GPU after determining theest and furthest fragment
for each pixel. Empty space is compressed in memory usingdirection table as
in [KEOZ], but the ray is sampled regularly even in empty avdsequency regions.
Several hierarchical data-structures have been propasedy-tracing of polygonal
scenes on the GPU [HSHHO7]. However, the complexity and aostarching along
rays is greatly reduced by the fact that meshes are opagheiircase.

Our approach builds on the compact hierarchical structomette GPU by[[DGPR02,
[CHNO5K] and adapts them to the storage of sparse volumesst@uature shares sim-
ilarities with brick maps[[CB04] but ours is dynamic, and aasequence its content
is view-dependent (through LOD and visibility). We henceaite complex volumes
ef ciently and adaptively, enabling fast ray-marchingetitly on the GPU.

Dynamic loading

Real-time rendering of very large terrains has the samenegent of having to man-
age a large scene visible at all levels of details througlspestive. Here, level of
details (LOD) approaches adapt the memory requirementteitual needs. Several
methods have been proposed to dynamically load terrairhpaton demand [LH04,
|[AHOS,/LDNO4].

An aspect of our work is the extension of such approacheslton®data. Adding a
third dimension is of course much more involved in terms ofmogy management.

In 2.5D (terrains) and even more in 3D scenes, a lot of datadkided: detecting and
rendering only visible data is a crucial source of resouasing). Conservative predic-
tion of visibility in scenes is an important and dif cult tapin Computer Graphics.

Since we rely on volume ray-tracing, taking advantage ofusion comes for free: the
ray-casting marches the data in depth order, which ordeiréstty provided by the
volume structure. Our dynamic ray-tracing will directlyiptout the necessary tiles to
be loaded.

3 Overview

A lot of scenes in Computer Graphics — and especially the oreearget — are com-
posed of sharp or fuzzy objects lying in mostly empty spaag. 8Bheme is optimized
for such an assumption: We expect details to be concentaatiederfacd$ between
dense clusters and free spaice,, “sparse twice”. More generally, we deal with high-
frequency interfaces between regions of low frequencyiwithe density eld: We
treat constant areas.().,core regions) just like empty areas. (see Figdre 1). Our
key idea is to exploit this assumption in the design of ouregje, rendering, and vis-
ibility determination algorithms, together with the usaaksumptions concerning the
exploration modalities so as to ensure reasonable timerenbe

2 Note that all real interfaces are fuzzy at some point sineitypis also a question of scale: Physically,
very thin pieces of opaque material are transparent, ahtldigiays enters a few steps in matter. Moreover,
in terms of LOD the correct ltering of infra-resolution oleelers yields semi-transparency.

INRIA
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Figure 1: Details tend to be concentrated at interfaces between daosters and empty space.

Our spatial data structure isNg-tree (a generalized octree) storing MIP-mapped 3D
texture bricks in its leaves (see Figlile 2,Left). The trezdrichy is mirrored on the
CPU and the GPU, the 3D bricks are stored in a poel,@ big texture) on the GPU.
We describe it in Sectidi 4. Rendering is performed by diyeety-marching the data
structure on GPU. It can interrupt and resume when some dgatassing, on a per-
pixel basis (see Figufd 3). Each pass of rendering resulidist of missing tiles to
guery. This is described in Sectibh 5 and Fidure 5. Bricksdgreamically generated
on demand by aroducereither on CPU or GPU. Anraclebased on priori knowledge
on the scene layout allows to predict empty (or constar& tivhich require no brick
production (without it, rendering sparse scenes would g vestly). Producer and
oracle are described in Sectidn 6.

¢

Figure 2: (Left:) Our hybrid spatial structure combines &Nree and MIP-mapped 3D texture
tiles. (Right:) Traversal of the hybrid structure along a ray (illustraten 2D with recursive
DDA).

Terminology

In the following, tiles refer to the spatial regions associated to medes These are
aligned with the regular subdivision of the object or scenartling box. Volume
data is represented only at theaves knowing that the tree subdivision is adaptive (to
distance, visibility and content). Thus at any time, alliogg of space are represented
somewhere in the tree at a given subdivision level: leale e space.

Bricksrefer to voxel grids storing the volume density of leaf tilelsenever necessary
(i.e.,when visible and not constant). Note that not all leavesaiariricks, since we
deferred the production of these up to the moment whereviwhility is certain. For
brevity, we might anyway speak of “parent of a tile” or “prauitog a tile”.

Nodes and bricks are stored on GPU in two lapgels These resemble indirect tex-
tures packing tiled [KEQ2, LN0OB, CBD4]. But differently toet static use of these, the
content of our pools change dynamically so as to store alhdoessary data in a con-

RR n° 0123456789



8 Crassin & Neyret & Lefebvre

text where all the existing data cannot t the memory. Everrenave use these pools
ascacheghrough an LRU mechanism.

Overall algorithm

At any time, the leaves of our tree structure tile the bougdiox of the scene (adap-
tively, at the minimum useful resolution according to diste, visibility and content).
Some contain data, some not (these are marked “invalid”g ddntent of our struc-
ture is inherited from frame to frame. At the beginning of avrfeame, the tree leaf
nodes intersecting the view frustum are re-validated ireotd mark the ones which
no longer t the new viewing conditions (frustum, LOD). Thatér will have to be re-
generated (leaf node simpli cation or subdivision, brialoguction) if they happen to
be visible, which is deferred up to the moment where rayitigaqueries it (.e., they
are proven visible). At the end of the frame, the tree can lbggzlfrom unused bricks
(e.g.,occluded). This is done lazily (LRU table and occasiondisiefor ef ciency.
The pseudo-algorithm is given on Figure 6.

[ ofO10
AS

HNO|@ HNOI®

\ \ A\,
v v 4 v

Figure 3: Interleaved progression of the 3 tasks (rendering, tilergpse production). From
left to right At a new frame after a camera move (1), the tree is inheritéfler revalidation

of the tree, some tiles (area #2) are invalidatedy(,need simpli cation or subdivision). A rst
rendering pass traverses the valid data. Each ray goes aafaossible (area #3) and stops once
opacity is full or data is missing. The list of missing tilesgas #4) is gathered and transmitted
back to CPU to query them. Some will be declared as constatfitebgracle (#5,left). Some will
yield a brick production (if not already available in cachafd its loading to GPU (#5,right).
Some will require a subdivision. Then rendering is resuntags(area on #6), and the cycle
repeats: query and production of missing tiles (area #7Mdexing resumed (area #8).

4 QOur volume data structure

4.1 Structure

kd-trees are known to be one on the most ef cient structuresrg@amize polygonal
scenes for ray-tracing [Hav00]. But their ef ciency depsrah a complex analysis of
data spreading. Moreover, these trees tend to be very déepyi€lds costly traversal.
The regular subdivision oi® trees (.e., generalized octrees) is more convenient to
build and traverse, and is more GPU-friendly [LHNO5b, LHMND5AIsO, it allows to
easily trade between memory ef ciency (IoM; deep tree) and walk ef ciency (large
N, shallow tree).

3ForLast Recently Usedeach entry has a time stamp reseted when data is used. thdlocse the LRU
entry.

INRIA
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On the other hand, regular grids are known to be the besttsteufor even distribu-
tions. Indeed, the best GPU data structure for dense bldoksxels is a 3D texture:
storage is compact, traversal is done simply by regular 8agpf a ray, linear inter-
polation is ensured by the hardware.

Our representation combines the best of each: We encodeeneswith aN® tree,
storing blocks oM? voxels — which we refer alsricks — in its leaves. . We rely on
MIP-mapped bricks, since the LOD level may arbitrarily vafgng a ray depending
on the viewing conditions. As illustrated in Figure 2,Lddtjcks naturally tend to be
concentrated at interfaces between regions of constasttgen

4.2 Implementation of the structure

The N2 tree is stored both on the GPU side — walked during renderiagd-on the
CPU side — to monitor the updating of the data on the GPU. Sitgito [LHNO5a],
our tree nodes are stored on the GPU in a large 3D texture hwhgcrefer to as the
node poal Each node is &° block stored somewhere into the node pool. Each block
entry stores (see Figure 4):
- A bit to tell whether the node is a leaf;
- A bit to tell whether the leaf is validi.g., currently subdivided at the correct LOD
and containing up-to-date data);
- A bit to tell whether a leaf content is constaetd.,empty or core regions) or de-
scribed through a brick;
- the data, which is either:
- A pointer toward a child node for non-leaves;
- The average value at this location for constant leaves;
- A pointer toward arM? brick for non-constant leaves.

Pointers are encoded @s v; w) coordinates within 3D textures. Similarly to the nodes,
the MIP-mappedv® bricks are all stored within another large 3D texture whiah w

refer to as thérick pool If the producer is on CPU, we optionally maintain a larger
version of this pool on CPU side to be used as a cache.

In order to avoid wrong interpolation of samples close tolitbeder of the bricks, a
band-guard of 1 voxel is addedd_, border voxels are duplicated in neighbor bricks).
This principle is not friendly with usual MIP-map pyramidace adding a band of 1
voxel at levell would require to store a band of @oxel at base level. We prefer to
manage the MIP-map pyramid “manually”: We stor®IP-map levels a$ separate
3D bricks of resolutior(2' + 2)3 stored inl different brick pools. We need only one
pointer in the node since th@;v;w) is the same in thé pools. See Figure 4. Only 3
levels of MIP-map are required since the leave is already@b.L

4.3 Structure update

Our data structure is updated dynamically: only visiblecksiat useful LODs are
stored. The LOD of visible non constant tildse(, containing a brick) is calculated
in function of the viewpoint according to the usual MIP-mad@d.OD calculation. If
more resolution is requested for a brick, this is obtaineduph subdivision of the
node (a reminder that our brick size is constant). Constensitly regions (no brick)
and low frequency regions are never subdivided. Note thaleveieveral of theN®
children of a given leaf node might be constant; only the momnstant ones will require
to store aM?® data brick. Update of the tree structure is done simultasigan the

RR n° 0123456789



10 Crassin & Neyret & Lefebvre

Nodes pool Bricks pool

: - -
|2z -
e o
Empty D D ‘MQEWW‘

leaves Bricks
(constant area) (voxelized area)

===/

1 2

Figure 4: Our hybrid NE-tree+brick structure (illustrated as &' bin-tree instead of R for
clarity).

CPU and the GPU. The CPU tree contains a bit more informatidiadilitate data
structure maintainance and might rely on a larger pool todeslwas a cache. The
pools counterpart on GPU are updated throsighTexture  operations.

Checking and cleaning old tiles out of the GPU pools immedijatould incur a large

penalty, especially as they might be visible again soontelds we rely on a LRU

mechanism and we use the pools as a cache: for each pool weamain the CPU a

list of block pointers sorted by date of last use. The timegtaf a tile is reseted when
its visibility is con rmed by the ray-tracer (see Section Bhe last pointer in the list is

recycled for the next allocation so that during exploratiom oldest tiles are recycled
rst.

Inserting or updating a data brick is done in the same way desio the corresponding
pool. However, preparing the voxel data for a brick is natiéiiand can be a slow
process. Itis ensured bypgoducer(see Section 6).

Initialization at a new frame

At every new frame if the point of view has changed, new tilesdme visible while
some are no longer. Moreover, the LOD to be used for leavegigea location might
require simpli cation or subdivision of the leaf node sothze currenttree is no longer
correct.

Before rendering we visit all leaves intersecting the negwwirustum. We mark the
leaf as “invalid” if its LOD has changed: It must be subdividar simpli ed. (In the
rst case, subdivision is deferred. In the second case, welzactly identify the parent
node at the right LOD, make it a leaf, and mark this one asidyeRecall that the tree
covers the entire scene extent: There is no concept of rgissgion, only leaves at the
wrong LOD or not yet provided with a brick of data. So we doréed to worry about
leaves leaving the view frustum since the LRU mechanism learttiem. Similarly,
leaves entering the view frustum will already be invalid dtrat the right LOD or if
the brick has been recycled. The valid tiles remaining cpoed to bricks already on
GPU and likely to be used during rendering. (If really uséejrttime stamp will be
reseted in the LRU).

This makes our rendering conservative as it prevents angfedate region to be tra-
versed: During rendering, rays reaching invalid leaves vél stopped. Data will be
loaded, and rendering restarted.

INRIA
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5 Our rendering algorithm

5.1 Ray-casting our structure

Our rendering consists of marching the data in the structloneg the view rays while
cumulating color and opacity. Hierarchically, rays havst to traverse th&3-tree,
then theM3-bricks if any (see Figure 2,Right). The most ef cient metho traverse
the tree along a ray should be recursive DDA.(generalized Bresenham) through the
N2 tree nodes. This algorithm relies on a stack which implesmentGPU as indexed
memory [SM4], but this is very inef cient on current GPUs. stead, we locate the
leaf node corresponding to the next ray segment by a direcieaié from the tree root
similarly to thekd-restartalgorithm [HSHHO7]. A brick is traversed by a regular
sampling along the the ray. The sampling rate and the rel&iNP-map level are set
depending on the viewpoint. Recall each brick has its own-iégp pyramid.

The optical operation per voxel is the same as with any voltreeer: Light and opac-
ity are accumulated, and we consider a pre-integratedféiafusiction as in [EKEO01]
for quality reconstruction. A phase function or a pseudo+hlighting (using the
density gradient as normal) can easily be accounted for.

As usually done for GPU ray-tracers, the process is ingialiby rendering a large
single primitive on screen (callgatoxy surfacgwith the ray-caster implemented in a
pixel shader. We use a simple quad covering the screen.

5.2 Interrupting and resuming the rendering

In our case, after a camera move all the necessary brickader¢he frame may not be
present in GPU memory when launching the ray-casting. Weodevant to produce
and fetch all the volume data present in the view frustumesime expect the rendering
of foreground bricks to occlude background bricks beforeewer have to generate and
store them. Instead, we stop all rays reaching a missing Tiles is of course done
on a per-pixel basis. The consequence is that we may needftompeeveral passes
to complete the ray-casting of the volume for a given franaghepass resuming each
ray where it stopped after the missing tiles get producedstockd on GPU. Thus
each rendering pass has to provide a list of missing tilesiemyqto the producer (see
Section 5.3) and the necessary information to resume theastyng.

To process ef ciently these multiple passes of rendering tr@at only the rays which
need to be resumed when rasterizing the (large) proxy sirfeus is done by adding
amask buffeand aray-state buffe(see scheme on Figure 5):

- Themask bufferags the pixels for which rendering must be resumed. Thesdha
pixels for which data was missing. Itis encoded as a Z forieficy early-Z
test will prevent for the evaluation of useless fragments).

- Theray-state buffeistores the state of stopped rays (due to tile miss) and is gen-
erated by the previous rendering pass. This is done by usileglizatedender
target in addition to the regular RGBA and Z outputs. The ray-stateb/ con-
sists of the distance to eye of the interrupted sample.

During the next rendering passe(, when rasterizing the quad proxy surface), these
buffers are used as input texture. Note that they alwaysireomGPU side. Only rays

RR n° 0123456789



12 Crassin & Neyret & Lefebvre

selected by the mask are thus launch@c., the not already opaque for which data
was missing), starting at the provided location.

on board g
Volume
data

(LRU cache)

mask
(visible
pixels)

queries list

validation list

ray last

p—- . 2 mple

reset LRU
timestamp

GPU CPU

Figure 5: Interaction between rendering and production passes dutire processing of one
frame(see also Figure 4 for the data structure and Figure i6tii@ overall algorithm). Mask
ow is in blue, tile ow is in green. The ray-marcher marcheset of selected rays and stops on
tile miss. Visible pixels are kept in a mask to point the raybe resumed once the data will be
completed. Tile numbers are registered in a compigetjuery bufferprovided to the CPU. Tiles
already stored in the GPU brick cache or in the optional CPU@lvaare immediately available.
For other tiles, the CPU produces and uploads missing tiles.

5.3 Returning tile information from a rendering pass

Getting the list of missing tiles to query

A ray stops if it traversed the whole scene, if it gets opaguef during the tree
traversal the shader has reached a tile with “invalid” age-, a leaf not at the correct
LOD for which the brick is not available. It is easy to prodwseextra output buffer
storing these tiles numbers, but it would be costly to transtich a large buffer back
to the CPU. Moreover, it is very redundant as large areastevilll to reach the same
missing tile. Instead, we reduce it to a sma# queries buffe(typically, 32 32) in
which each pixel summarize the information gbiael block(typically, 16 16). This
reduction is done with an extra pass which rasterizes thd boféer. Its shader scans
the tiles numbers of the small block corresponding to thestubuffer pixel and stores
the rst four different tile numbers. Of course some infortima might be discarded,
but this will simply require more passes since rays will rean invalid leaf again.

Providing the queried tiles

The smalltile queries bufferis uploaded in CPU memory and parsed. Redundant
queries are ignored. 4 cases of query can occur: constastitienti ed by to the
oracle are treated immediately. Similarly for tiles whiaithks are already available in
the GPU brick cache or in the optional CPU cache. Subdivistguests are treated
immediately. However, the production requests for chlkebtare not generated imme-
diately since it is not yet proven that a ray will reach evehilcc The only exception
are constant bricks, since their update and required meisorgry low. Remaining
queries correspond to bricks which must be generated byrtdtkiper.

4Theearly-Z test guarantees that only these fragment shaders are techlua
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Updating tiles timestamp

We need to know which tiles were traversed during rendetingrder to reset their
time stamp in the LRU cache. (As long as a tile remains on GR&JCPU side has no
information about its use). Here again we must transfeririliermation to CPU, but
this one is not critical and can be done lazily. We take acdagaf the holes in the
tile queries buffer if there are less than four missing tiles in a pixel block, stere
validated tiles in the free entries instead, with a ag toritifyy them. In the worst case,
that is screen regions with no tile miss and no tile LOD chashgiing several frames,
this will reset the time stamp of at least 4 tiles per pixekkland per frame.

5.4 Practical issues

Mixing volumes and meshes

Our representation can handle a complete scene. Still, int@Coften required to
combine several representations (meshes, billboards;lpar..), possibly organized in
a scene graph. In such case, we embed the volume renderidg the proxy surface
of an object €.g.,see our hypertexture examples below). This is done by usiisg t
surface as the proxy primitive on which to evaluate the radsin Note that this also
provides an optimization of the volume rendering since \®aad tiles out of the shape
are not even considered.

Guaranteeing the frame rate

The number of tiles to update depends on the camera mosoreliicity, the proximity
of the surface, its sparsity, etc. A given frame might regjtoo many updates and cause
a sudden irregularity in the interactive frame rate. If isisot acceptable for a given
application, we can set a time budget for a frame and postpfrigde productions
after the delay is passed. The highest available LOD willispldyed in place of the
required data. For this, we need to slightly modify the lasgso as to keep track of
the last available data when descending in the tree higrarch

6 Implementation of Producers and Oracles

6.1 Producer

The source data describing the scene can be stored on therdisknemory, possibly
compressed, or described procedurally, or a combinatidimosie {.e., data ampli ca-
tion). Theproduceris in charge of providing bricks of data on demand, for a given
region of space at a given resolution. If this region is canfstit returns the constant
value instead. It may also determine that a lower resoluiauf cient for this brick.
These tile status can be precomputed (for explicit dat@lueted dynamically trough
analysis of the produced brick, or known a priori by the aegelg.,bounding box,
procedural data). Note that despite the oracle, it is oftégrésting to make the pro-
ducer analyze the resulting brick before uploading it to GRl@mpty, constant or
low-frequency this can save both storage and ray-tracingpeances.

For explicit volume data the producer is on the CPU and itk esimply to access
the data from disk or RAM and upload it on GPU. For proceduagdit is sometimes
possible to implement the producer totally on GPU (see eXasnp Section 6.3). The
rst case costs in CPU time and in bandwidth due to transfesmfthe CPU to the
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14 Crassin & Neyret & Lefebvre

/[--- init frame ---------------
foreach tree leaf in frustum
if (LOD(tile)!=MAX(distLOD(tile),contentLOD(tile)))
if too_subdivided(tile) setLeaf(parent at right LOD)
invalid(tile)

forever // --- interleaved render/query/production passe S
Il --- render ----------------
bind mask; bind ray-state; draw quadProxy
shader: (for pixels in mask)
march tree from dist=ray-state(pixel)
if (tile=invalid) output RGBA,dist,tile; exit fragment
if (tile=const) cumulates RGBA(length)
if (leaf) march brick
cumulates RGBA
if (opaque) ouput RGBA; exit fragment
generates mask from tileQueriesBuffer (set if non empty que ry)
draw tileQueriesBuffer
shader: reduce missingTileBuffer, insert tiles to confirm
/I --- query and production ------------
get and parse tileQueriesBuffer
if "empty" end of frame
if "to validate" resetTimeStamp(tile)
if "require brick(tile)"
if (oracle(tile)="const") update node
if isinGPUcache(tile) restore links
if isinCPUcache(tile) upload brick; update tree ( *)
else brick=producer(tile); upload brick; update tree ( *)
if "to subdivide”
subdivide(tile); update tree
foreach subtile
if (oracle(subtile)="const") update node
else invalid(subtile)

Figure 6: The overall algorithm. Uploading uses the oldest pool slet (LRU mechanism).
(*): if the producer is on GPU there is no upload and no CPU cache.

GPU, the second case costs in GPU time.

Procedural descriptions can be managed either by the peo@treation of a brick) or
they can be used directly on the y during the ray-castiagy(,ampli cation of low
resolution data). The second solution saves storage simbre costly if the voxels
of the brick are evaluated more than once on average.

6.2 Oracle

Theoracleis in charge of delivering information allowing to skip ttegents for a tile
(i.e.,subdivision or brick production) using some a priori knoside: for a given region
of space, it may tell conservatively if this region is inbi, or constantd.g.,empty

space or in the cluster core).

A priori knowledge is available for most scenes of interest Gomputer Graphics.
E.g.,at least the bounding box of objects can be known, or an opaitioin structure
might be precalculate@(g.,[CS94]). In other cases, where volumes are used to locally
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Bone Sierpinski Bunny pseudo-mesh ramp transp hypertexture perlin

depth resol ms fps depth resol ms fps ms fps ms fps ms fps ms fps

deptsh r:fg' = ffg t 2 729 | 10 9% | 5 512 || 19 52 | 88 26 | 54 19 | 26 38 | 3L 32

¢ 7 2048 70 14 ) 4 (hole) 18 56 7 1024 30 33 7 13 149 7 41 24 52 19
9 8192 41 24 4 6561 24 41 9 8192 83 12 91 11 59 17
10 4.8M 30 33 10 16384 139 7

Exploration render update (ms) fps
| example (ms) prod #nb #passes upload tre¢ tot extra costs bone Sierpinski pseudo mesh ramp hypertexture Peiflin
] Bone 116 1.4 27 3.6 75 38 60 5.4 L prod 1 tile 0.3 0 0 0 33 0

Sierpinski 25 0 0 0 0 0 0 40 shading cost 16 38 19 28
Hypertex 218 277 83 4 0 37 329 1.8

Figure 7: Performances with our 3 examples scenes: bone data, Sskiponge, hypertex-
tured bunny. a,b,c: ray-casting cost at 3 typical distances (no animation, nadshg). See
Figure 8 for the corresponding images. 'Hole' in b is the \aart shown in the teaser. The grid
marching represent 66% to 75% of this cost. The shading oagitven ine,bottom:. Most of it

is due to the on-the y calculation of normals from densitgdjent.d: We show the decomposi-
tion of the rendering time and the update time during exglora Note that these explorations
go deep in the matter, thus challenging our method. Timingsh,c give the best fps one can
expect at a given depth. The production cost of one singtk isi given ine,top. For update
performance (measured on the videos), the camera veloa#yset to 4 closest voxel length per
frame {.e.,we adapted it to the resolution of the closet tile, with tirakaxation). Performances
for other velocities scale linearly.

enrich surfaces (as for hypertextures, relief maps, hitioeal textures, volumetric
textures), it is known by construction that the details anbedded between an interior
and an exterior surfaces.

6.3 Applications

We tested a simple explicit volume producer, a procedurapcer, and an hypertex-
ture producer.

The explicit volume producer is trivial: raw volume dataegdy exists and bricks
are precomputed by regular subdivision of the data. Preatatipn can also analyze
these bricks to mark constant ones. The CPU producer sinpbtyad them on demand
to the GPU. We also tested ampli cation of the data with prhgal noise to increase
the resolution of details. If no precomputation is poss{elg.,output from another
program) and no oracle is available, it might still be ingtireg to analyze bricks on
CPU before transferring them to GPU to replace them on they gdnstant tiles when
it applies.

We tested two types of procedural producers: density delme@ noise function
(see next item), and fractal geometry illustrated by a $iskp sponge. For the later
we simply always refer to the same unique brick at every lonand scale during the
exploration.

For hypertextures [PH89], opacity is 0 outside of the outefaxe and 1 inside of
the inner surface (thus the oracle can easily avoid evalgdlie procedural function
in these regions). In the interface layer between both sesfaa distance eld(X)
allows to de ne a gradient opacity from 0 to 1. The noise isatliged as a perturbation
of this gradient. In our example we chose opacitfe( X) + k:P(X)) whereP(X) is
Perlin noise [Per85]f() is a sigmoid function andé is a gain factor. Sincd() corre-
sponds to the distance to a surface its evaluation on thecgisplicated, so we charge
the producer to build low-resolution bricks of the distaredd. This is detailed in Ap-
pendix A. We chose to evaluai) on the y since we expect the interior voxels to
be invisible due to opacity occlusion. For comparison, vee aésted generating high
resolution bricks through a GPU producer of hypertexture.
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16 Crassin & Neyret & Lefebvre

7 Results and discussions

All our benches were done on a Core2 bi-core E6600 at 2.4 Gldzaa®800 GTS
512 graphics card (G92 GPU) with 512 MB. All images are readeat resolution
512 512. See also the accompanying video.

Example 1: Explicit volume (trabecular bone).

We used a 10Pscanner data of a trabecular bone. We pre-subdivided tkeimtat
16° bricks at every LODs. We pre-computed the MIP-map and weyagdithe data to
mark constant blocks. In our tests, the data could t the CRunory (testing disk-to-
GPU streaming is out the scope of this paper). We copied tiigne 8 times in each
direction in order to simulate a 8192esolution. In our data structure, we udéd 2
andM = 16. See performances on Figure 7,a,d.

Example 2: Procedural volume by instantiation (Sierpinski).

We used one unique brick of sizeBwhich is instantiated at all non-empty tiles, so
that there is no producer. We naturally chdée 3 so that we can also rely on one
unique node which is instantiated for all non-empty chifdfeve benched with and
without). The resolution is potentially in nite, but in pctce the oating point preci-
sion of coordinates limits the zoom td%s0 the maximum virtual resolution is4v2.
See performances on Figure 7,b,d.

Example 3: Hyper textures and ampli cation of a mesh.

For this example we use a volume clipped inside a bunny mdshray-marching
operates only between the rst and last ray-mesh intersectWWe implemented the
distance eld producerto generate a ramp in the vicinityhefsurface, the hypertexture
based on this distance eld (either as a brick producer orrathe y ampli cation,
using 20 octaves of Perlin noise), and some other test caatgns. In these examples
we usedN = 2 andM = 16. See performances on Figure 7,c,d.

Example 4: Cumulus cloud.

Our method was used to encode the cloud details in [anonyjepaper dealing with

multiple scattering in clouds). The raw shape was descnitiéta mesh which we

ampli ed with hypertextures much like the bunny exampleehoThe distance eld

was about 13% of the cloud size. We ud¢d 2, M = 32, and 5 octaves of Perlin
noise. The virtual resolution was 2048

Memory usage:

In most examples the node pool was small: 4 MB, corresportdi6g® entries. Using
16° bricks, this can index a 10240lume pool. Our implementation incurs a memory
overhead (using 16 bytes per entry which could be easily cessed), but it is not
critical for this pool. The addressable amount of bricksaigér than what the GPU
memory can contains. The brick pool used 430 MB, allowing4@Ybricks.

Our method handles both GPU producer for procedural noiddaron the y com-
putation of the noise during the ray-marching. Generallgiclv one to choose is a
tradeoff between computational ef ciency and memory efiecy. This essentially de-
pends on the application. Moreover, it is interesting to thgeon-the- y methods to
let the artist ne tune noise parameters, and then to latgrae a producer for the
nal visualization. Note also that if brick voxels are usexb$ that 1 time on average
(e.g.,sharp shapes, fast camera motion, animated noise), og-tiwse evaluation
becomes the most ef cient in terms of computations.
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Figure 8: Some result images corresponding to timings. (a): Tratsdobne data. (b): Sier-
pinski procedural sponge. (c): Hypertextured bunny. (dunBy with pseudo-surface, blurry
silhouette, solid noise (see also the teaser).

Another similar tradeoff is on-the- y transfer functionngeis more complex voxel data
(e.g.,RGBA instead of density). On interior views of the bone exlEmapplying the
transfer function during brick production instead of ragnching would saver@sto
be compared with a 16 time increase in memory cost. Yet anaih@lar tradeoff
concerns normals calculation. In all our examples, we usethe- y gradient compu-
tation.

8 Conclusion and future work

We have presented a method allowing for interactive rendesf large and very de-
tailed volumes. Itis based on a fully dynamic work ow (dateustures and algorithms)

point. We presented a complete scheme to march the compigstlacture totally on
GPU.

For future work, we plan to investigate thinner performanggng, for instance by
pre-producing bricks very likely to be necessary samg,,the one close to the LOD
threshold. Priority management of tiles to subdivide, aydaginic load-adaptation of
global voxel resolution are other potential paths. We alsotto manage instancing
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18 Crassin & Neyret & Lefebvre

within the data, similarly to what is done in 2D by [LNO3]. Ouext goal is to account
for shadows and animated data in the same spirit.

A Computing distance elds on GPU

We propose a method to calculate on GPU the approximatendesteld to a surface
in avolumes. The surface mesh is kept in GPU memorNiB& We want to generate
the brick corresponding to the eld in a given tile. The piiple is to evaluate for each
voxel its distance to the mesh in the 6 axis directions. Teadce to the mesh is then
approximated as the distance to the plane de ned by the sldsersection along the
3 axis (see Figure 9).

In practice, for each slice of the brick we project the meshviduate the distance along
thez axis, keepin@bgqz). We simulate slices inz andyz directions by rotating the
mesh instead (so that we slice the volume
only once), and we store the 3 corresponding distance
in R,G,B . Then we calculate the distance estimate from
these 3 values as described above.

This approximationis acceptable in our case since the vol-
ume layer thickness under the surface is small. (The low
est frequency of the proxy surface is supposed to be larger
than the layer thickness). It yields very good performances
as compared to other distance eld evaluation methods.

Figure 9
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