Shadows

AN
N\
N
N
N
SRRNS

Light and shadows

> Shadows increase realism:

1UP 000000

ENEMY
p ANE
20

HWWWWWWWW&WWWWW
© GA 1982

Zaxxon (1982)

Cry Engine

Light and shadows

» Shadows increase realism

» Shadows help you perceive:
hidden objects

Light and shadows

» Shadows increase realism

» Shadows help you perceive:

hidden objects
the relative position of objects

L |

()

\I;

(

é

)\

®

Light and shadows

» Shadows increase realism

» Shadows help you perceive:
= hidden objects
= the relative position of objects
= the object shape

- i

Light and shadows

» Constraints for real-time shadows

> Light sources Dynamic
> Shadow Casters Dynamic
- Shadow Receivers Dynamic

Doom 3 (2004)

Light and shadows

» 2 kind of shadows:

= Hard shadows
- Point light source

= Soft shadows
- Extended light source

Hard shadow

» Point light source

» A point is in shadow if it is not
visible from the light source

Point light source

-

Shadow caster

Shadow receiver

Soft shadow

» 3 areas:
= Shadow: light source completely hidden
= Penumbra: light source partially hidden -
= Lit: light source completely visible

Extended light source

Shadow caster

penumbra

penumbra i \ / :
\ shadow \\Efvadow receiver

©2003- Arts

Computing hard shadows

Shadows /visibility

» A point is litif it is
visible from the light i
source @ %

» Computing shadows=
visible surface
determination

MIT EECS 6.837, Durand and Cutler

Flat shadows

» Draw the graphics primitives again, projected
on the ground

Flat shadows+ /-

+ Fast, easy to code

- No self shadows, no shadows on curved
surfaces, no shadows on other objects

MIT EECS 6.837, Durand and Cutler

Using textures

» Separate between occluder and receiver

» Draw a picture of the occluder, seen from the
light source

» Use it as a texture on the receiver

From the light source From the viewpoint

Moller & Haines “Real Time Rendering”

Modern shadow algorithms

» Shadow Volumes

» Shadow Maps

- Object space approach

- Image space approach

Shadow maps

1.Offscreen rendering from the light source
= Keep z-buffer in a texture

2. Rendering from the view point
= Transform current pixel into light space coord.
= Compare current depth with depth in texture
~" Change lighting depending on visibility test

Shadow maps : step 1

» offscreen rendering from the light source:
Transformation + projection matrix
Light space coordinates
Store depth into an FBO

» FBO -> texture —

Shadow maps : step 2

» Standard rendering

» Vertex shader:

= Compute projection in screen space
= And in light space

» Fragment shader :
= Interpolate coordinates
= Coord. texture shadow map
= z = distance light source
= z from shadow map

= Comparison
= ACoord. texture =[0,1]2

Shadow maps: comparison

» z_shadowMap < z_computed

In shadow
Ambient lighting only

» z_shadowMap == z_computed
Lit

Ambient + Diffuse + Specular

» z_shadowMap > z_computed
Should not happen, in theory

Shadow maps: 15t picture

Shadow maps: 15t picture

» “it’s not a bug, it’s a feature” =

» What’s happening? \\\
Comparison z stored/interpolated z

z value constant for each pixel

Self—ShadOWing |_|ghtmap pixels

» Solutions:
Comparison with z+epsilon (bias)
Draw only back-sided surfaces

Back-sided surfaces only

» Easy: glCullFace(GL_FRONT);

&

-~ ~No acne on the
visible surfaces

;

Acne in the dark anyway

Back-sided surfaces only

P

A few issues with self-shadowing
(in reverse)
Still need bias for comparisons.

Back-sided surfaces only

Behind the Scenes

Small constant bias (5e-3)

Medium constant bias (1.5e-2)

¥

Shadow discontinuities

Other bias methods

» Slope-dependent: tan(angle N,L)*a + b
=b>0,a="?

» Relative: z71*(1 - epsilon) < z2

Projection / light source

» It’s a projection:
Must divide by w

» What does it mean if w < 0?
What should we do?

» What should we do if we’re outside shadow
map?
How can we check?

Shadow maps: pro & cons

» Pros
Easy to implement
Works, regardless of the geometry of the scene
Cost does not depend on scene complexity

» Cons
Several (>= 2) scene rendering
Omni-directional light sources?
Sampling/aliasing

Increasing shadow map resolution is not
enough (light source facing viewer)

Aliasing issues: solutions

» Increase shadow map resolution

» Focus shadow map on visible parts of the
scene

» Adapt sampling (warping)
Depending on light-source distance

» Multi-resolution Shadow maps
Cascading shadow map

Focus the shadow map

11

8
e
.

"

o

Increases the practical resolution

Focused

Warping for shadow maps

okay aliased still okay

okay now

Uniform sampling in z Variable sampling in z

» How?

» Linear projection
= Not centered on the light source
= Optimized based on view frustum + LS position

» TSM, LiSPSM...

Cascading shadow maps

-

[

Cascading shadow maps

L
w;{?bz///,
SHEEs
Ny

Cascading shadow maps

Cascading + warping

z
I /%
X T
//‘
"
- s
—
— - — —
] ——
~—
— [—
-\.
[—
\\.
—

h\\w\\\m

Partitioning Partitioning + warping

Shadow Volumes algorithm

1. For each shadow casters, build a shadow
volume

2. For each fragment, count how many times
we enter/leave a shadow volume
> 0 :in shadow

= 0 : lit

Shadow Volumes algorithm

» Building a shadow volume
Silhouette of each object from the light source

Infinite quads touching
the light source

Each silhouette edge We
. : : = &N
» Counting entering/leaving %ﬂ
Use the stencil buffer / | \
Use the orientation of each shadow quad / i \
for the sign

Extract the silhouette?

» Silhouette of each object from the light
source

‘)

:

How? 1mn

Building semi-infinite quads?

How? 1mn

How do we count?

» Use the Stencil buffer
Shadow volume side visible, front-facing: +1
Shadow volume side visible, back-facing: -1

» 2 rendering pass:

First front-facing, then back-facing
glCullFace(...)

» 1 rendering pass:

glStencilOpSeparate (GL_FRONT, GL_KEEP, GL_INCR_WRAP, GL_KEEP) ;
glStencilOpSeparate (GL_BACK, GL_KEEP, GL_DECR_WRAP, GL_KEEP);

What we have...

Z-pass by example:
how the stencil buffer is used

What we wnat...

23

/-pass. issue

» What if the eye is in shadow?

/E :; E\
7’ 1 Mo
Vi NN
’ [N
’ | N
7] \ N
7
| \ N
]
]

/Z-fail

» Have a lit point as reference
» A point at infinity must be lit
» Need to cap the shadow volume

Simply invert z-test and
<@§.> invert stencil inc/dec

Near capping

Z-fail by example

Shadow volumes: pro&cons

» Pros:
Sharp shadows
Arbitray positions for light source/camera
Robust (if well programmed)

» Cons:

silhouette computation (CPU/GPU)

requirements on scene geometry (manifold, closed
surfaces)

Rendering the scene twice, + the shadow volumes

Overdraw

CC Shadow volumes

©2003- Arts

Soft shadow computations

\

Soft shadows

» More complex
= Point-to-area visibility, with continuous value
- Instead of binary point-point visibility
- silhouette?

Soft shadows

» More complex
= Point-to-area visibility, with continuous value
Instead of binary point-point visibility
silhouette?
= Shadow of the sum # sum of shadows
A hides 50% and B hides 50%, A+B doesn’t hide 100%

. Area light source ﬁ Area light source 5 4 Light source

Occluder 2
Occluder

Occluder 1

Penumbra

Recoter R

Visibility of light source

Soft shadows

» More complex
Point-to-area visibility, with continuous value
Instead of binary point-point visibility
silhouette?
Shadow of the sum + sum of shadows
A hides 50% and B hides 50%, A+B doesn’t hide 100%

» Many algorithms

With varying accuracy
Approximating the shadow casters
Precomputations (Precomputed Radiance Transfert)

With varying speed

Soft shadows through sampling

» Accumulating shadows:
= Compute several hard shadows
= Add them, average the results
= accumulation buffer
= Needs many samples
- Computation time proportional to # échantillons

4 échantillons 1024 échantillons

Soft-shadow volume

» For each silhouette edge:
Compute volume around penumbra (wedge)

For each pixel in this wedge
Compute attenuation coefficient

» Beautiful, realistic, expensive

P |

Object/image methods

Rendering Fake Soft Shadows with Smoothies [SOR03]
E. Chan, F. Durand

smoothies

light’s view (blockers only) light’s view (blockers + smoothies)

Shadow mapping extension

» Percentage Close Filtering (PCF)
Filter shadow map around sampling point
Possible GPU speed-ups (2x2 kernel)
Pre-filtered, stored in mip-map

1 sample 9x9 kernel 17x17 kernel

Shadow mapping extension

» Percentage Closer Soft Shadows (PCSS)
[Fernando 05]

= Compute kernel size first, by sampling shadow map

= Filter using PCF
(or extensions)

PCSS

» 1. Blocker search

Shadow map

------- Average occluder
depth 7,

PCSS

» 2. penumbra size

Wpenumbra =

S
Pz — Zavg

Zavg

Wlight

Zavg

A] Planar

occluder

Y |
P
Wpenumbra

PCSS

» 3. filtering

Filter region
(size ~ Wpenumbra)

(here, occlusion = 50 %)

PCSS : issues (1)

»| 1. blocker search
» 2. penumbra size
»| 3. filtering

2 steps requiring several access to shadow map

PCSS : issues (2)

» Easy, quite fast

» Visually pleasing results
For a small light source

» No physical realism

» Visible artefacts
For large penumbra width
If occluders hidden from center of light source
For non-flat occluders

Shadow mapping extensions

» Percentage Closer Soft Shadows (PCSS)
[Fernando 05]

PCF

Hellgate: London (2007)

Soft shadow maps

Soft Shadow Maps [AHLHHSO06] Atty et al.
Real-time Soft Shadow Mapping by Backprojection [GBP06] Guennebaud et al..

Light source Light source Light source Light source
— — — —

e . .
Occluders P

Soft Shadow Map

Shadow of P | S
(a) Scene view (b) Discretizing occluders (c) Soft shadows from one (d) Summing the soft shadows

micro-patch

Back-projection

» Shadow map = object discretization

» Compute shadow of discretized object
» Realistic, real-time, animated scene

» [Atty06] et [Guennebaud06]

-
O
-
O
),
-—
O
-
Q.
__
4
O
G
(a8

Ambient occlusion

\

Motivation

» Approximating the
occlusion under distant
lighting
= Ambient term taking visibility

Into account

» Perceptually related to
depth, curvature and
spatial proximity

Definition
» Integral of visibility over hemisphere Q:
A, (77) = 1 j V. (&)(ii.d)d o
72.0

= Cosine term = diffuse lighting
= Usually, attenuation depending on the distance to P

Computing the integral
GPU Gems, chap 17
» Sampling
= Precomputation (ray-casting)
= Store in a texture

+ Rendering at no extra cost
- Slow precomputation
- Static scene

Diffuse + AO

Computing the integral

» Screen-Space Ambiant Occlusion (SSAQ)

= Use the depth buffer as an approximation of the
scene

= For each pixel, sample the hemisphere on the GPU
= Filtering for noise reduction

+ Independent form scene complexity
+ No pre-computation
+ Dynamic scene

- Longer rendering

Cry Engine 2

Deferred shading

» Fragment shaders get expensive:
Complex materials, textures, indirect lighting...

» Pb. for complex scenes/multi-layers:
Shading for all surfaces
Even if they’re invisible
Z-buffer test after the fragment shader

» Need: visibility before shading materials

Theoretically impossible
Solution: deferred shading

Deferred shading

» 15t pass: rendering into 3-4 aux. buffers

ol
A y ~ A . A

Position (x,y,z) Normals Colors, materials, textures

» 2"d pass: compute shading
using these buffers

Deferred shading + SSAO

» SSAO :

Needs a geometry buffer
Is expensive: must reduce number of calls

» Deferred shading :

Has a geometry buffer
Did visibility as pre-computation

» Good match of algorithms

Beyond SSAQ

-

AT TTYY TN 5 M

Approximating Dynamic Global lllumination in Image Space
Ritschel et al. 2009

WA
WO

