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Light Transport Operator:
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Context / motivation

Light Transport Operator:

T,Tb
∞−dimensional

−→ Tn
n × n matrix

Finite Rank approximations of T:
I piecewise constant functions [Goral84,Hanrahan91]
I wavelets [Gortler93]
I spherical harmonics [Green2003, Ramamoorthi06]
I polynomials [Ben-Artzi2008]

L = Le + TLe + T2Le + ...



Context / motivation

Assumption: for a specific L, TnL→ TL

Light Transport Operator:

T,Tb
∞−dimensional

−→ Tn
n × n matrix

Used in...
I Finite Element Global Illumination

I Precomputed Radiance Transfer
I Neural rendering
I Inverse lighting
I Dimensional analysis
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Context / motivation

Assumption: σ(Tn)→ σ(T)

Light Transport Operator:

T,Tb
∞−dimensional

−→ Tn
n × n matrix

Used in...
I Finite Element Global Illumination
I Precomputed Radiance Transfer
I Neural rendering
I Inverse lighting
I Dimensional analysis
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Context / motivation

Are Light Transport Operators T and Tb compact ?

General linear operator T in infinite dimensions:

I uncountable eigen/singular-values,∞-multiplicity

σ(Tn) 9 σ(T)

‖(Tn − T)L‖ → 0 depending on L
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Are Light Transport Operators T and Tb compact ?

Compact operator (See our paper):

I countable eigenvalues converging to 0

σ(Tn)→ σ(T)

‖(Tn − T)L‖ → 0 uniformly

I Example: integral operators with square-integrable
kernel (e.g. convolution)
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Summary of our findings

In this paper, we show
I T is never compact
I T still shares key properties with compact operators

I in closed scenes, T has a complete Schmidt expansion (a.k.a. SVD in∞ dimensions)
I Tb (T re-formulated in Lambertian scenes) is generally not compact
I Tb shares key properties with compact operators

I not invertible
I acts as a low-pass filter (away from edges)

I local reflectance Kx is compact
⇒ not invertible

I connections to historical choices & future developments.



Lambertian case

How do we prove that Tb is not compact?

”Compact linear operators map bounded sequences into sequences with converging
subsequences”

(See paper for more details)
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Consequences of non-compactness

No uniform approximation by finite rank operators of T and Tb
⇒ meshes provide bounded error only for a specific light distribution

I Adaptive methods are needed and require guidance
I PRT and Neural methods cannot give global error garantee
I Spectral analysis based on matrix approximations need additional justification

Tb is not the uniform limit of operators with bounded kernels
⇒ bias when connecting close points using a bounded weight in path tracing



Consequences of non-invertibility

I Kx is not invertible
⇒ inverse shading is ill-posed

I inverting Tb looks like de-convolution (See paper)

I inverting multi-bounce transport is trivial (Le = (I− T)L)
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Conclusion / Take-away messages

Some properties looked obvious (to me!), but proved wrong:

I there is no uniform finite rank approximation of T, and Tb (in scenes with edges)

I Tb is not invertible

I the cause of problems is not visibility ;-)
I for T, the cause is partial integration (see paper)
I for Tb, the cause is frequency preservation next to abutting edges



Acknowledgments

Funding:
I French Research Agency CaLiTrOp project - ANR-16-CE33-0026
I Royal Society University Research Fellowship.

Cyril Soler Ronak Molazem Kartic Subr


