

A Theoretical Analysis of Compactness Of the Light Transport Operator

Cyril Soler

INRIA Grenoble University Ronak Molazem

INRIA Grenoble University **Kartic Subr**

University Of Edinburgh

$$L(\mathbf{x},\omega)\longmapsto (\mathbf{T}L)(\mathbf{x},\omega)$$

 L_e

$$L(\mathbf{x},\omega)\longmapsto (\mathbf{T}L)(\mathbf{x},\omega)$$

 TL_e

$$L(\mathbf{x},\omega)\longmapsto (\mathbf{T}L)(\mathbf{x},\omega)$$

 T^2L_e

$$L(\mathbf{x},\omega)\longmapsto (\mathbf{T}L)(\mathbf{x},\omega)$$

$$L = L_e + \mathbf{T}L_e + \mathbf{T}^2L_e + \dots$$

$$B(\mathbf{x}) \longmapsto (\mathbf{T}_b B)(\mathbf{x})$$

$$L=L_e+{\sf T}_bL_2+{\sf T}_b^2L_e+\dots$$

Light Transport Operator:

$$\mathsf{T}, \mathsf{T}_b \longrightarrow T_n$$

 ∞ -dimensional $n \times n$ matrix

Finite Rank approximations of T:

- piecewise constant functions [Goral84, Hanrahan91]
- wavelets [Gortler93]
- spherical harmonics [Green2003, Ramamoorthi06]
- polynomials [Ben-Artzi2008]

$$L = L_e + \mathbf{T}L_e + \mathbf{T}^2L_e + \dots$$

Light Transport Operator:

$$egin{array}{lll} {f T}, {f T}_b & \longrightarrow & {\cal T}_n \ \infty-{
m dimensional} & n imes n \ {
m matrix} \end{array}$$

Used in...

► Finite Element Global Illumination

$$L = L_e + \mathbf{T}L_e + \mathbf{T}^2L_e + \dots$$

Assumption: for a specific L, $T_nL \rightarrow TL$

Light Transport Operator:

$$egin{array}{lll} {f T}, {f T}_b & \longrightarrow & {\cal T}_n \ \infty-{
m dimensional} & n imes n \ {
m matrix} \end{array}$$

Used in...

- ► Finite Element Global Illumination
- Precomputed Radiance Transfer
- Neural rendering

$$L = L_e + \mathbf{T}L_e + \mathbf{T}^2L_e + \dots$$

Assumption: for all L, $||T_nL - TL|| < \epsilon$

Light Transport Operator:

$$egin{array}{lll} {f T}, {f T}_b & \longrightarrow & T_n \ \infty-{
m dimensional} & n imes n \ {
m matrix} \end{array}$$

Used in...

- ► Finite Element Global Illumination
- Precomputed Radiance Transfer
- Neural rendering
- Inverse lighting

$$L = L_e + \mathbf{T}L_e + \mathbf{T}^2L_e + \dots$$

Assumption: T is invertible, and $T_n^{-1} \approx \mathbf{T}^{-1}$

Light Transport Operator:

$$egin{array}{lll} {f T}, {f T}_b & \longrightarrow & T_n \ \infty-{
m dimensional} & n imes n \ {
m matrix} \end{array}$$

Used in...

- ► Finite Element Global Illumination
- Precomputed Radiance Transfer
- Neural rendering
- Inverse lighting
- Dimensional analysis

$$L = L_e + \mathbf{T}L_e + \mathbf{T}^2L_e + \dots$$

Assumption: $\sigma(T_n) \to \sigma(T)$

General linear operator **T** in infinite dimensions:

▶ uncountable eigen/singular-values, ∞-multiplicity

- $\boldsymbol{\mathfrak{S}} \quad \sigma(T_n) \nrightarrow \sigma(\mathbf{T})$
- $\|(T_n \mathbf{T})L\| \rightarrow 0$ depending on L

Compact operator (See our paper):

- countable eigenvalues converging to 0
 - \circ $\sigma(T_n) \to \sigma(\mathbf{T})$
 - $\|(T_n-\mathbf{T})L\|\to 0$ uniformly

Example: integral operators with square-integrable kernel (e.g. convolution)

Compact operator (See our paper):

- countable eigenvalues converging to 0
 - \circ $\sigma(T_n) \to \sigma(\mathbf{T})$
 - $\|(T_n \mathbf{T})L\| \rightarrow 0$ uniformly
- Example: integral operators with square-integrable kernel (e.g. convolution)

Are Light Transport Operators **T** and T_b compact ?

Summary of our findings

In this paper, we show

- ▶ T is never compact
- ▶ T still shares key properties with compact operators
 - ▶ in closed scenes, **T** has a complete Schmidt expansion (a.k.a. SVD in ∞ dimensions)
- ightharpoonup T_b (T re-formulated in Lambertian scenes) is generally not *compact*
- ► **T**_b shares key properties with compact operators
 - not invertible
 - acts as a low-pass filter (away from edges)
- ▶ local reflectance K_x is compact
 - ⇒ not invertible
- connections to historical choices & future developments.

Lambertian case

How do we prove that T_b is **not** compact?

"Compact linear operators map bounded sequences into sequences with converging subsequences"

(See paper for more details)

Lambertian case

How do we prove that T_b is **not** compact?

"Find one bounded sequence $\{B_n\}_{n>0}$, such that \mathbf{T}_bB_n has no converging subsequence"

(See paper for more details)

Lambertian case

How do we prove that T_b is **not** compact?

"Find one bounded sequence $\{B_n\}_{n>0}$, such that \mathbf{T}_bB_n has no converging subsequence"

(See paper for more details)

Consequences of non-compactness

No uniform approximation by finite rank operators of T and T_b

- \Rightarrow meshes provide bounded error **only** for a specific light distribution
- Adaptive methods are needed and require guidance
- PRT and Neural methods cannot give global error garantee
- Spectral analysis based on matrix approximations need additional justification

 T_b is not the uniform limit of operators with bounded kernels

⇒ bias when connecting close points using a bounded weight in path tracing

Consequences of non-invertibility

- ► K_x is not invertible
 - \Rightarrow inverse shading is ill-posed
- ▶ inverting **T**_b looks like de-convolution (See paper)

Consequences of non-invertibility

- ► K_x is not invertible
 - \Rightarrow inverse shading is ill-posed
- ▶ inverting **T**_b looks like de-convolution (See paper)
- ▶ inverting multi-bounce transport is trivial $(L_e = (\mathbf{I} \mathbf{T})L)$

Conclusion / Take-away messages

Some properties looked obvious (to me!), but proved wrong:

- \blacktriangleright there is no uniform finite rank approximation of T, and T_b (in scenes with edges)
- ightharpoonup T_b is not invertible
- the cause of problems is not visibility ;-)
 - for T, the cause is partial integration (see paper)
 - ightharpoonup for T_b , the cause is frequency preservation next to abutting edges

Acknowledgments

Funding:

- ► French Research Agency CaLiTrOp project ANR-16-CE33-0026
- ► Royal Society University Research Fellowship.

Cyril Soler

Ronak Molazem

Kartic Subr