THESE

Pour obtenir le grade de

DOCTEUR DE L'UNIVERSITE DE GRENOBLE

Spécialité : Mathématiques Informatique
Arrété ministériel : 6 Aout 2006

Présentée par

Cyril Crassin
These dirigée par Fabrice Neyret

préparée au sein du Laboratoire Jean Kuntzmann
dans I’école doctorale de Mathématiques, Sciences et Technologies de
I'Information, Informatique

GigaVoxels:

A Voxel-Based Rendering Pipeline
For Efficient Exploration Of Large And
Detailed Scenes

These soutenue publiquement le 12 Juillet 2011,
devant le jury composé de :

Mathias Paulin

Professeur, Université Paul Sabatier, Toulouse, Rapporteur
Michael Wimmer

Associate Professor, Technische Universitat, Wien, Rapporteur
Jean-Michel Dischler

Professeur, Université de Strasbourg, Examinateur
Carsten Dachsbacher

Professor, Karlsruhe Institute of Technology, Examinateur
Miguel Sainz

Director of Developer Technology, NVIDIA, Examinateur
Francois Sillion

Directeur de Recherche, INRIA, Examinateur

Fabrice Neyret

Directeur de Recherche, CNRS, Directeur de thése

Acknowledgements

Je tiens tout d’abord a remercier Fabrice pour son encadrement tout au long de ces 4 années de thése
qui furent extrémement enrichissantes, tant d’un point de vue scientifique que personnel. J’ai énor-
mément apprécié sa disponibilité, son regard toujours objectif et pertinent, ainsi que son implication,
sa passion et son admirable vision de la recherche.

Je remercie également tous les anciens et les nouveaux membres de 1’équipe ARTIS pour leur bonne
humeur et la formidable ambiance que tous contribuent a créer et & perpétuer. Un merci particulier a
mes co-bureaux et amis, Pierre et Olivier, pour avoir supporté mon bazar et mes mauvais jeux de mots
pendant plus de 2 ans. Un grand merci également a Elmar pour toute 1’aide qu’il m’a apportée durant
cette these, ainsi qu’a Eric et a Charles pour leur appui mathématique précieux. Je n’oublie pas non
plus EVASION qui fut mon équipe « d’origine » et dans laquelle j’ai également passé d’excellents
moments. Puisse « I’esprit d’iMAGIS » continuer a vivre encore longtemps !

Je tiens également a remercier Mathias Paulin et Michael Wimmer d’avoir accepté de rapporter ma
these malgré les délais assez courts que j’ai dii leur imposer. Un grand merci également a Jean-Michel
Dischler d’avoir pris part 2 mon jury en tant qu’examinateur ainsi qu’a Francois Sillion d’avoir ac-
cepté de présider ce jury. I would like to thank also Carsten Dachsbacher for being part of my jury, as
well as Miguel Sainz for his trust and the great opportunity he gave me to work for a company I have
always dreamed to work for. Un grand merci également 2 Emmanuel Melin qui a cru en moi depuis
tant d’années, et sans qui je n’en serais sans doute pas ou j’en suis aujourd’hui, ainsi qu’a Sylvain Ju-
bertie pour son amitié, son soutien et pour m’avoir donné le goit de la recherche. Je tiens également a
remercier Sarah Janvier Lewis pour le travail extraordinaire de relecture et correction qu’elle effectué
sur mon manuscrit.

Pour finir, je voudrais remercier tous mes amis pour le soutient et la bonne humeur qu’ils ont pu
m’apporter. Un merci particulier a Adeline et a Maxime, mes camarades de galére pendant 5 ans,
pour tous les moments qu’on a pu partager. Je remercie également ma famille pour son soutient tout
au long de mes études. Enfin, je remercie bien siir Marléne pour tout son soutien, sa patience (il lui
en a fallu), son courage (il lui en a fallu également) et sa compréhension durant ces trois années.

Abstract

In this thesis, we present a new approach to efficiently render large scenes and detailed objects in real-
time. Our approach is based on a new volumetric pre-filtered geometry representation and an asso-
ciated voxel-based approximate cone tracing that allows an accurate and high performance rendering
with high quality filtering of highly detailed geometry. In order to bring this voxel representation as
a standard real-time rendering primitive, we propose a new GPU-based approach designed to entirely
scale to the rendering of very large volumetric datasets.

Our system achieves real-time rendering performance for several billion voxels. Our data structure
exploits the fact that in CG scenes, details are often concentrated on the interface between free space
and clusters of density and shows that volumetric models might become a valuable alternative as a
rendering primitive for real-time applications. In this spirit, we allow a quality/performance trade-off
and exploit temporal coherence.

Our solution is based on an adaptive hierarchical data representation depending on the current view
and occlusion information, coupled to an efficient ray-casting rendering algorithm. We introduce a
new GPU cache mechanism providing a very efficient paging of data in video memory and imple-
mented as a very efficient data-parallel process. This cache is coupled with a data production pipeline
able to dynamically load or produce voxel data directly on the GPU. One key element of our method
is to guide data production and caching in video memory directly based on data requests and usage
information emitted directly during rendering.

We demonstrate our approach with several applications. We also show how our pre-filtered geom-
etry model and approximate cone tracing can be used to very efficiently achieve blurry effects and
real-time indirect lighting.

Publications

The work presented in this thesis appeared in the following articles, proceedings, books, invited talks
and posters.

Book chapters

[CNSE10] Cyril Crassin, Fabrice Neyret, Miguel Sainz, and Elmar Eisemann. Efficient Rendering
of Highly Detailed Volumetric Scenes with GigaVoxels. In book: GPU Pro, chapter X.3,
pages 643-676. A K Peters, 2010.

International conferences and journals

[BNM*08] Antoine Bouthors, Fabrice Neyret, Nelson Max, Eric Bruneton, and Cyril Crassin. Inter-
active multiple anisotropic scattering in clouds. In ACM Symposium on Interactive 3D
Graphics and Games (13D), 2008.

[CNLEO9] Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar Eisemann. Gigavoxels :
Ray-guided streaming for efficient and detailed voxel rendering. In ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games (I13D). ACM, feb 2009.

[CNS*11] Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eisemann. In-
teractive indirect illumination using voxel cone tracing. In [ONGOING SUBMISSION]
Computer Graphics Forum (Pacific Graphics 2011), September 2011.

National conferences

[BNM*07] Antoine Bouthors, Fabrice Neyret, Nelson Max, Eric Bruneton, and Cyril Crassin. Rendu
interactif de nuages réalistes. In AFIG ’07 (Actes des 20emes journées de I’AFIG), pages
183-195. AFIG, November 2007.

Talks ans posters

[CNL*09] Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, Miguel Sainz, and Elmar Eisemann.
Beyond triangles : Gigavoxels effects in video games. In SIGGRAPH 2009 : Technical
talk + Poster (Best poster award finalist). ACM SIGGRAPH, August 2009.

[CNS*11a] Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eisemann. Interac-
tive indirect illumination using voxel cone tracing: A preview. Poster ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games (I3D). Best poster award., feb 2011.

[CNS*11b] Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eisemann. Inter-
active indirect illumination using voxel cone tracing: An insight. In SIGGRAPH 2011 :
Technical talk. ACM SIGGRAPH, August 2011.

Industry invited talks
[CNEQ09] Cyril Crassin, Fabrice Neyret, and Elmar Eisemann. Building with bricks: Cuda-based
gigavoxel rendering. In Intel Visual Computing Research Conference, 2009.

[Cra09] Cyril Crassin. Gigavoxels: Voxels come into play. Crytek Conference Talk, nov 2009.

Contents

1 Introduction and motivation 15
1.1 Motivation: Real-time rendering of large and complex scenes 15
1.1.1 Limits of current mesh-based rendering approaches 16

1.1.2 Voxel-based approach to geometry pre-filtering 23

1.2 Other applications and usage of voxel representations 27
1.2.1 Voxels for volumetric materials and effects 27

1.2.2 Voxelsinspecialeffects 27

1.2.3 Scanandsimulationdata oL oL 28

1.2.4 Voxels as an intermediary representation for authoring 28

1.3 GPUdevelopment e 30
1.3.1 Hardware generations e 30

1.32 Computemode e 30

1.3.3 Limited video memory, limited bandwidth fromthe CPU 30

1.3.4 Memory regionsot e e e e e e 31

1.3.5 Increasing gap between memory access speed and processing power 32

1.4 Problems and objectives 33
1.4.1 Problems with voxel-based rendering 33

1.42 Target SCENES o« v v v v i e e e e e 34

143 ODbjectives v v v v e e e e 35

1.5 Contributions e e e 36
2 Related work 37
2.1 Anti-aliasing filtering 37
2.1.1 Geometry anti-aliasing filtering oL 37

2.1.2 Texturefiltering 39

2.2 Volume representations in Computer Graphics 42
2.2.1 Adding details and realistic appearance 42

2.2.2 Octree textures : sparse solid-texturing 43

223 Brickmaps e 44

2.3 Volume rendering for scientific visualization 46

2.3.1 Physics of volume light transport 46

10

2.3.2 Main volume rendering approaches
2.4 Managing the complexity: Representations and algorithms
24.1 Rendering L
2.4.2 Spatial data structures oLl
243 Visibilityculling Lo
2.4.4 Multiresolution rendering approaches for volume rendering
2.5 Out-of-core data management
2.5.1 Caching : Virtual memory based paging systems
2.5.2 Texture Streaming vttt e e e e e e

2.5.3 Out-of-core scientific visualization

Contributions: core model

The GigaVoxels rendering pipeline

3.1 Globalscheme
32 OVEIVIBW . . . o v e e e e
3.3 Technological choices L

3.3.1 Preliminary GPU performance characterization

Volumetric geometry representation and pre-integrated cone tracing
4.1 OVEIVIEW . . . o ottt e e e e
4.2 Pre-integrated cONe traCing v it e e e e e
4.2.1 Volume pre-integrationtheory
4.2.2 Discrete compositionscheme,
423 World-space definition
4.3 MIP-map pre-integration model L Lo
4.3.1 Quadrilinear interpolation L Lo Lo
43.2 Cone-shapedbeams o
4.4 The decorrelation hypothesis L L L L
4.4.1 Decorrelation of densities alongabeam
442 Impactofthecorrelation
443 Typicalcases e
4.5 Pre-filtering shading parameters : toward a multiresolution reflectance model
4.5.1 Material parameters Lo
4.5.2 Simple normal distribution function oL
453 Localshadingmodel L L
4.6 Practical implementation of themodel o oL

4.6.1 Initial voxelization of surface geometry

69

71
72
73
75
75

4.7

4.6.2 Isotropic and anisotropic voxel representations
4.6.3 Compactisotropic voxels Lo
4.6.4 Anisotropic voxels for improved cone-tracing

Conclusion e e e

Data Structure

5.1 The octree-based voxel MIP-map pyramid: A sparse multi-resolution structure
5.1.1 Octree + Bricks representation
5.1.2 Constant regions and frequency-based compression
5.1.3 The N-tree : A Generalized Octree
5.14 Thebricks. e
5.2 GPUimplementation 0 it e e
5.2.1 Structure storage: thepools Lo
5.2.2 Octreenodesencoding e
5.3 Structure characteristics e e
Rendering
6.1 Hierarchical volume ray-casting
6.1.1 Globalscheme
6.1.2 Traversingthe structure
6.1.3 GPU scheduling and traversal efficiency
6.14 DescendingintheOctree
6.1.5 Brickmarching L L
6.1.6 Empty or constant space skipping
6.2 Integration with traditional CGscenes
6.3 Performance analysis L L

6.3.1 Performance comparison with rasterization

6.3.2 Rendering costs and silhouettes Lo L

Out-of-core data management

7.1

7.2

7.3

Overview and contributions Lo
7.1.1 Application controlled demand pagingonthe GPU
7.1.2 Detailsonourapproach,
Multi-pass update scheme and progressive refinement
7.2.1 Top-downrefinement Lo
7.2.2 Update strategies o v v i e e e e e e e e e e
A High Performance GPU Cache for graphics applications
7.3.1 Cache structure and storage

7.3.2 Building GigaVoxels data structures based on cached storages

11

91
91
92
94

95
96
96
97
98
98
100
100
102
104

105
106
106
107
108
109
110
112
113
114
114
115

12

7.4

7.5

7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
7.3.8

Interface withthecache
LRU replacement policy
Managing datarequests ool
Parallel dataload
LRU invalidation procedure

Application specific optimizationso

Handling data requests : Voxel producers

7.4.1
7.4.2
7.4.3
744
7.4.5
7.4.6

Managing multiple objects
Writing into texture pools
GPUload producer e
Loading from disk and system memory caching
Examples of dynamically loaded datasets

GPU procedural and mixed producers

Results and performance analysis

7.5.1
7.5.2
7.5.3
7.54
7.5.5

Repartition of the costs per frame
Cacheefficiency e
Comparison with CPU-based transfers
Comparison with CPU-based LRU management

Out-of-core ray-tracing of triangle scenes

II Contributions: Applications of the model

8 Direct applications

8.1
8.2
8.3

Octree-based synthesis

Voxel object instancing e e e e e
MipMap-based blureffects

8.3.1
8.3.2

Soft shadows
Depth-of-field

9 Interactive Indirect Illumination
Using Voxel Cone Tracing

9.1
9.2
9.3
94

Introduction e e

Previous Work e

Algorithm overview L e

Our hierarchical voxel structure

9.4.1
9.4.2
943

Structure description
Interactive voxel hierarchy construction

Voxel representation e e e

157

159
159
160
161
161
163

9.5 Ambient Occlusion e 171

9.6 VoxelShading e 171

9.7 Indirect llumination 172
9.7.1 Two-bounce indirect illumination 172

9.7.2 Capturing direct lllumination 172

9.8 Resultsand discussion L 175
9.9 Conclusion e 177
I Conclusion 179
10 Conclusions and perspectives 181
IV Appendix 185
A Preliminary GPU performance characterization 187
A.1 Characterizing texture cache behavior 0. 187
A.2 Rasterization and scheduling of fragment shading 189
A2.1 Motivations oL e e e e e e 189

A22 Methodology e 189

A.2.3 Summary of our "interpretations and discoveries" 190

14 | CONTENTS

Infroduction and motivation

1.1 Motivation: Real-time rendering of large and complex scenes

Figure 1.1. Illustration of a multiscale scene. Sources: (Left-to-right) San-Francisco by arcortvriend , San-
Francisco from www.staysf.com, Coit-tower from hitp:/fwsisf.com

Photorealism has always been a major goal for computer graphics (CG). Today, one of the key prob-
lems is the management of details. Rendering large multi-scale scenes (such as the one presented in
figure 1.1) and very detailed objects (Figs. 1.2 and 1.3) accurately and efficiently is now one of the
most challenging problems in computer graphics, not only for real-time applications, but also for CG
featured films. Usual rendering methods tend to be very inefficient for highly complex scenes because
rendering cost is proportional to the number of primitives. In such scenes, many geometrical details
have to be accounted for in each single pixel. The small size of primitives creates high-frequency
signals that lead to aliasing artifacts which are costly to avoid. In order to produce high quality ren-
dering, all lighting contributions of these details must be integrated in order to compute the final color
of a given pixel. This integration poses two kinds of problems: how to do it efficiently (in terms of
performance), and how to do it accurately (in terms of quality).

In this section, we will show how current rendering approaches reach their limits both in terms of
quality and performance when dealing with very complex and multi-scale scenes. In this context,
scalability is an absolute necessity. We will see that massive per-pixel supersampling is not afford-
able for real-time applications, and does not scale to an increasing number of details to be integrated
per-pixel. Thus, geometrical simplification approaches have to be used, in order to deal with large
amounts of geometrical data, and to prevent aliasing problems. But such simplifications inevitably
remove details that would have contributed to the final image, and fails to preserve important shading
effects (eg. roughness). The challenge in this context is to be able to keep shading details while allow-
ing interactive rendering and maintaining a reasonable memory consumption. We will demonstrate
how some form of geometrical pre-filtering is required to tackle this problem, and explain how we
propose to rely on a volumetric enriched representation to handle it.

16

1.1.1 Limits of current mesh-based rendering approaches

All current rendering models used today to display geometry are based on a triangle or quad mesh rep-
resentation. With this representation, objects are modeled by their surface, and are decomposed into
simple primitives for rendering. Rendering is a view-based sampling operation. The idea is to sample
a 3D scene in order to reconstruct a 2D image. The 3D scene represents the continuous source signal,
while the 2D image is the signal we want to reconstruct. According to the Nyquist-Shannon sampling
theorem [Nyq28], sampling frequency needs to be at least twice the highest signal frequency in order
to reconstruct it correctly. Sampling below this Nyquist limit leads to so-called "aliasing". Conceptu-
ally, this means that we need no less than one sample for each peak and another for each valley of the
original signal. That means that for each surface primitive to render, at least two samples need to be
calculated in order to accurately reconstruct its contribution to the final image. Thus, increasing the
geometrical complexity of a scene necessarily means increasing the sampling density used to compute
the rendered image in the same proportions, in order to ensure a high quality reconstruction.

Figure 1.2. Example of an highly detailed mesh modelized using ZBrush [Spe08]. Image courtesy of Yeck.

The problem is that the amount of available processing power does not scale as fast as the need for
more and more complex objects, and even if it did, increasing the computation proportionally to the
complexity of a scene do not seems to be a scalable or sustainable solution. Similarly, the amount of
memory available for rendering is a limited resource and storing and quickly accessing arbitrary large
and complex scenes is a challenging problem.

The primary challenge in computer graphics has always been to bit these constraints in order to pro-
duce a more and more detailed rendering, without increasing the processing time and needed storage
in the same proportions. Real-time rendering of highly complex geometrical scenes poses two kinds
of problems. First, a quality problem: how to accurately integrate the shading contributions of all
details, in order to prevent aliasing and capture expected lighting effects. Second, a performance
problem: how to efficiently deal with large amounts of geometrical data, both in terms of computation
and storage.

Classical mesh+texture representation

The classical way to deal with detail rendering is to split geometry representation into a coarse
triangle-based surface mesh representation and fine scale surface details, reflectance and illumina-
tion properties, specified with 2D texture maps [Cat74] and used as parameters in a local illumination

17

model. When objects can be seen from a relatively limited range of distances, this representation
makes it possible to use a unique coarse mesh and to pre-filter detail maps linearly and separately.
The idea is to estimate the averaged outgoing radiance from a surface to a pixel by applying the lo-
cal illumination model on the averaged surface parameters from the map, instead of averaging the
result of this application on fine-grained details. To do so, the classical approach is to rely on MIP-
mapping [Wil83], with multiple map resolutions pre-computed before rendering. Such texture filtering
does not prevent aliasing to appear at the boundary of meshes and on the silhouette of objects. This
issue is usually addressed using a multi-sampling technique [Ake93], estimating per-pixel triangle
visibility at higher frequency (>1 sample per pixel) than the shading itself.

This classical approach works well for moderate range of view distances, and low-detail meshes, when
triangles cover at least one pixel on the screen and silhouettes do not contain thin details. But when
highly detailed meshes viewed from a wide range of distances need to be rendered, many mesh trian-
gles project to the same screen pixel and simply relying on the pre-filtering of the maps and a limited
multisampling becomes insufficient to integrate all surface details, and leads to aliasing artifacts.

Figure 1.3. Left: Example of an highly detailed character mesh modelized using Z-Brush. Right: Very com-
plex mesh modelized using 3D-Coat, a voxel-based 3D sculpting tool. Images courtesy of Benerdt.de (left) and
Rick Sarasin (right)

Adaptive supersampling

The classical way to integrate per-pixel geometrical details is to rely on supersampling [Whi80,
CPC84]. For each pixel, a weighted average of the illumination coming from all meshes elements
and falling into that pixel is computed, i.e., an integral of the contributions of all these elements,
which can be extremely costly. The outgoing radiance from a surface is given by a local illumination
model as a function of the incident radiance and the surface properties. Computing this integral nu-
merically during rendering (using massive sampling) can be extremely costly and many adaptive and
stochastic multi-sampling methods have been proposed to speed-up its computation by optimizing the
placement and distribution of samples. Adaptive supersampling allows us to push back slightly the
limit of complexity that can be handled per-pixel, but still does not scale with an arbitrary increase of
geometrical complexity. In addition, the cost of such supersampling of the geometry is usually not
affordable for real-time application.

Mesh simplification and geometric LOD

In such situations, the approach usually employed to deal with aliasing problems and reduce rendering
time is to simplify the geometry itself, in order to adapt it to the rendering resolution. This is done
by relying on geometric level-of-details (LOD) approaches that progressively remove mesh details.
The idea is to maintain a constant number of primitives to be rendered per screen pixel, whatever the
viewing distance and complexity of the original mesh.

18

Figure 1.4. Illustration of Quadrilateral mesh simplification [DSSCO08]

Mesh simplification is a tempting solution to deal with the geometry aliasing problem and is a way
for pre-filtering geometry, ie. eliminating high frequency details. The main problem is then to find
accurate pre-filtering methods that preserve appearance and light interaction. Many automatic meth-
ods have been proposed in order to automatically simplify triangle meshes and to provide a smooth
transition between levels-of-details [Hop96, DSSCO08]. However, automatic mesh simplification ap-
proaches are relatively difficult to control. Therefore in situations such as video game authoring,
simplified models have to be optimized manually. Most of the time in video-games, a set of simplified
versions of the meshes are pre-generated manually by artists, and the appropriate resolution is cho-
sen at runtime. This approach prevents us from using a progressive transition and leads to popping
artifacts.

Figure 1.5. Geometry simplification (top) with automatic details injection into normal maps (bottom). Source:
[COMIS8]

Details injection inside textures Mesh simplification inevitably removes details that would have
contributed to the final image. As illustrated in figure 1.5, some details removed between two sim-
plified versions of a mesh can be injected inside a detail map, in order to preserve their contributions
inside the projected geometry. Methods have been proposed to allow automatic detail injection inside
textures [COMO98]. Such methods lack flexibility and in practice, details textures are usually created
manually in order to be fully controlled by the artist. Moreover, details can not be preserved on the
silhouette of objects.

19

Figure 1.6. Left: Illustration of a large-range view of a forest. Source: YouWall.com. Right: Illustration of fur
rendering in off-line special effects, Source: The Mummy 3 (Digital Domain/Rhythmé&Hues)

Fundamental problem Surface-based simplification approaches perform best for finely tessellated
smooth manifolds that are topologically simple, or for relatively low simplification. For complex sur-
faces or high levels of simplification, they fail to capture the surface details needed to reconstruct a
correct appearance and shading (cf. figure 1.4). Moreover, mesh simplification approaches often re-
quire mesh connectivity. This is due to the nature of the simplification primitives (opaque triangles),
that makes it difficult to treat complex and disconnected objects. Thus, the quality of simplified mod-
els becomes unacceptable for extreme simplifications and when multiple objects need to be merged.

The fundamental problem is that the light interaction occurring on a set of multiple surfaces arranged
arbitrarily just can not be represented accurately with a single surface model. Thus, the filtered version
of shading parameters described on such a set of surfaces can not be approximated on a single surface.
This problem becomes obvious when we want to render scenes like a forest or fur on a character as
presented in figure 1.6. As illustrated in Figure 1.7, the geometrical simplification of objects like trees
can not lead to an accurate reconstruction of the shading of the high resolution mesh.

Figure 1.7. Illustration of wrong results from the simplification of meshes that can not be accurately simplified.

Multi-representation and IBR approaches

When objects need to be represented at multiple scales and geometric simplification fails, image-based
rendering techniques (IBR) and multi-representation approaches can be used. Image-based represen-
tations can be very efficient for distant view as they can naturally fuse multiple objects. For instance,
in order to render a forest like the one presented in figure 1.8, video-games usually rely on multiple
representations [WWSO01]. In such a case, close trees are generally represented using high-detail tri-
angle meshes, while mid-distance trees are simplified versions of this mesh, generally using billboards
for the leaves, and far trees are most likely entirely rendered using so-called impostors.

Although automatic simplification of complex 3D models using impostors has been proposed [DDSDO03],
creating such multiple representations can hardly be done automatically and usually still requires a

20

lot of work from the artists. In addition, continuous transition between different representations is
extremely difficult to achieve and such an approach leads to popping artifacts when passing from
one representation to another. Impostors provide a correct representation only when displayed for a
bounded viewing region called view cell, and they usually offer only limited parallax effects. The
other problem with image-based representations is that they do not offer the free transformation and
easy manipulation of standard geometry.

Figure 1.8. Illustration of forest rendering in video-game. Trees are rendered using multiple representations,
usually high resolution geometry for closeup views, simplified geometry for medium distance, and impostors
for far views. Such a scheme induces low quality geometry filtering and popping artifacts. Source: Crysis
(Crytek)

Inefficiencies of current GPU pipelines

GPU accelerated rendering pipelines are based on a rasterization approach. Historically, these
pipelines have always been optimized in order to provide the best performance for real-time appli-
cations. Current trends to improve the rendering quality in real-time applications focus on increasing
the number of rendered geometric primitives and decreasing their size. Ultimately, this trend should
drive real-time rendering approaches to a point where adaptive geometry approaches would be use to
ensure the projection of approximately one triangle per screen pixel as illustrated in Figure 1.9. But
with this trend, we are reaching the limit of efficiency of the rasterization-based rendering pipeline.

Figure 1.9. Illustration of a mesh adaptively tesselated in order to sample detailed surface accurately and
provide triangles approximately 1/2 pixel in area. Source: Kayvon Fatahalian, Stanford University, Beyond
Programmable Shading Course ACM SIGGRAPH 2010

Inefficiency for micro-geometry rendering Rendering micro-geometry (with triangles project-
ing on less than a few pixels in area) on the GPU is very inefficient, even on today’s last generation
GPUs that are designed to perform hardware tessellation of geometry [Micl1]. This is due to two
main factors: the individual transformation and projection of each vertex and the inefficiency of the
setup, rasterization and shading process that are optimized for big triangles.

21

Inefficient rasterization of micro-triangles Even the most recent hardware implementation of
the rasterization pipeline [Bly06] is very badly fitted to micro-polygon rasterization [FBH"10]. In-
deed, fundamentally the polygon rasterization algorithm is based on the assumption that triangles
cover multiple pixels and that a filling has to be done inside them. In addition, GPUs contains
many optimizations to speed-up the rasterization of relatively big triangles, covering tens or hun-
dreds of screen pixels (e.g. hierarchical rasterization, parallel coverage tests, compressed tile-based
z-culling [NBS06], etc.). In the case of pixel-sized triangles, such optimizations become inefficient
and even counter-productive [FLB*09].

Figure 1.10. Left: 2 x 2 quad fragments generated and shaded during the rasterization of a single trian-
gle. Right: Overshading created an the boundary of triangles intersection the same quads. Source: Kayvon
Fatahalian, Stanford University, Beyond Programmable Shading Course ACM SIGGRAPH 2010

Over-shading GPU rasterization pipelines shade each triangle uniformly in screen space with one
shading sample per pixel. Thus in theory, pixel-sized triangles should lead to the computation of ap-
proximatively one shading sample per pixel. However, actual GPU pipelines shade at a much higher
frequency even for smooth connected surfaces. The information needed to compute the shading for
a triangle at a pixel is encapsulated into a fragment. Each rasterized triangle generates fragments for
each pixel it overlaps', and shading is computed once per fragment. But when the triangles are small,
many pixels contain multiple fragments generated from different triangles of the same surface due to
partial pixels overlap (cf. figure 1.10), leading to pixels being shaded redundantly with similar surface
information (in case of connected surfaces). In addition, actual GPU behavior is even worse than that.
Indeed, to support derivative estimation using finite differencing, the rasterizer generates fragments
assembled in 2x2 pixel tiles called quads [Ake93]. This can result in more than 8X overshading for
pixel sized triangles of a smooth surface as illustrated in Figure 1.11.

Figure 1.11. Illustration of overshading induced by microtriangle tessellation. Source: [FBH"10]

We see that with pixel-sized triangles we reach the limit of the rasterization model. When triangles
become smaller than one pixel, shading becomes inefficient. In the context of off-line rendering for

"More precisely, a triangle must overlap the center of a pixel or one of its coverage samples (in case of MSAA) in order
to generate a fragment.

22

special effects, high quality shading of pixel-sized geometry is often desired to provide optimal image
quality. Thus to overcome the limit of the rasterization pipeline, another rendering approach is used:
REYES.

Offline high quality rendering pipelines

REYES [CCC87] is an off-line rendering pipeline dedicated to the rendering of micro-polygons. Al-
though it is still non-interactive, it has recently been shown that such a pipeline can be efficiently
implemented on the GPU as a data parallel pipeline [ZHR*09]. REYES is based on adaptive tessela-
tion and allows adapting the shading computation to the screen resolution. The idea of REYES is to
transform large control patches instead of individual micro-polygons, and then to tessellate ("dice")
only visible ones to adaptively generate pixel-sized polygons. These micro-polygons are shaded per-
vertex instead of per-pixel as it is the case for rasterization-based rendering, providing a high quality
object-space shading. In order to get the final image, these shaded micro-polygons are multisam-
pled per-pixel at a high frequency. Each sample is z-tested and all samples are combined to compute
the final pixel color. This approach allows us to adapt the geometry to the rendering resolution, and
the per-patch transform stage of REYES allows us to greatly reduce the cost of transforming micro-
geometry. These patches also allow a fast visibility test to quickly reject invisible patches.

However, while this approach works well for precisely rendering smooth surfaces described using
NURBS or Bezier patches (potentially perturbed using a 2.5D displacement map), it does not scale
to the rendering of complex geometry originally designed with 3D micro-details. In this case, control
patches became sub-pixels and all their advantages are lost.

23

1.1.2 Voxel-based approach to geometry pre-filtering

As we have seen, combining a high quality alias-free rendering with interactive performance for multi-
scale scenes and complex objects is a difficult challenge. Current rendering approaches do not scale
to such complexity and alternative solutions need to be developed. Our conviction is that in order
to maintain rendering performance, data storage and also rendering quality scaling with the increase
of geometric complexity, some kind of geometrical appearance pre-filtering needs to be employed.
Basically, the overall idea is to pay only for what you see, both in terms of computation and in terms
of storage.

Geometry pre-filtering

The idea of pre-filtering is that, under some linearity assumptions, it is possible to factor some shading
parameters out of the shading computation when integrating it over an area (in this case a pixel), and
to pre-integrate (average) these parameters separately (cf. Section 2.1.2). This permits us to remove
detail frequencies higher than the rendering resolution while preserving the mean value of the pixel
footprint. Pre-filtering not only textures but the whole geometry definition would allow alias-free
rendering of very complex geometry. Such geometry pre-filtering would provide a scalable rendering
solution with an amount of rendered data depending only on the rendering resolution, and thus scaling
up to very complex scenes. As we have seen in Section 1.1.1, simplifying a surface representation
using a simplified surface definition does not provide accurate filtering that maintains shading details
and correct appearance.

Figure 1.12. Illustration of the pre-filtering of complex geometrical details inside a single voxel element in
order to allow the reconstruction of an overall shading contribution.

The key observation that allow the pre-filtering of geometry was made by Perlin [PH89] and by Ka-
jiya and Kay [KK&9]. When considering a given volume of space containing multiple surfaces more
or less randomly distributed (like the branch and leaves illustrated in Figure 1.12), exact positions of
surfaces inside this volume do not really matter when computing the overall light interaction within
this volume 2. Thus, only using an overall density distribution and overall reflectance function is
enough to accurately compute the interaction of light with this volume (Fig. 1.12). Then, when sets of
complex surface definitions are considered, the parameters used for computing illumination for such
sets can more easily be described volumetrically, for a given volume containing these surfaces, than
with a simplified surface definition. With such volumetric representation, the matter is represented by
a density distribution associated with the parameters for the shading model describing the way light
is reflected within a unit of volume, instead of a set of interfaces and parameters on them. Once the
geometry is transformed into density distribution, filtering this distribution becomes a simple linear
operation [Ney98].

2As long as positions are not deeply correlated

24

114

Figure 1.13. 2D illustration of voxel-based geometry pre-filtering inside a MIP-map pyramid and storing
normal distributions. Source: [Ney9S§]

Voxel-based representation

The name voxel comes from "volumetric elements" and it represents the general-

ization in 3D of the pixels. Voxels represent the traditional way to store volumet-

ric data. They are organized in axis-aligned grids subdividing and structuring

space regularly. Voxel representations offer a promising way to store volumetric

data in order to unify texture and geometrical representations, while simplifying

filtering. The significant advantage of voxels is the richness of this represen-

tation and the very regular structure which makes it easy to manipulate. That makes voxels a good
candidate to address aliasing issues that are hard to deal with in triangulated models.

Multi-resolution representations are easily obtainable based on MIP-mapping of voxel grids, making
output-sensitive results possible. In Figure 1.14, voxel MIP-mapping with inter-levels interpolation
allows exactly adapting the geometrical resolution to the screen resolution. In contrast to image-based
approaches (IBR), voxel-based representations preserve a real 3D geometry that can be easily manip-
ulated, transformed and eventually mixed with a mesh scene [Ney98]. As we will see in Section 4,
accurate geometry pre-filtering is not simply averaging densities, but also supposes a pre-integration
of the visibility in order to ensure a correct occlusion between filtered elements.

Figure 1.14. Left: Illustration of an highly detailed object rendered (through 4 pixels) with adaptive multisam-
pling (left) and voxel-based pre-filtering (right)

What we propose is to rely on a unique voxel-based volumetric representation for both the coarse ge-
ometry and the fine-grained details (material) that can be pre-filtered accurately. This representation
stores both the material and the geometry parameters of the shading model into a voxel grid as we
will see in Section 4.2. Typically, each voxel contains a density-based opacity information, a material
color and a normal distribution.

We will see in the next section that, beyond the use of voxels for geometry pre-filtering, rendering such
representations can provide other interesting advantages. In particular, voxel representations handle
semi-transparency gracefully due to their inherent spatial organization, whereas triangles would need
costly sorting operations. In addition, such a structured representation simplifies various computa-
tions, including simulation processes.

25

Animation and integration into classical video-game scenes

Voxels are usually envisioned as a totally alternate scene representation, dedicated to rigid motionless
data (except when the whole data are regenerated every frame such as for fluid simulation). We would
like to motivate the full usability of voxel representations in video-game applications. Particularly we
would like to emphasize their capacity to smoothly integrate with mesh-based representations and to
handle animation and free transformations that are mandatory in such applications.

Within this thesis, we designed the foundation (in terms of geometry representation, data-structure,
rendering algorithm and management of large voxel datasets on the GPU) that opens the way to a
large class of new researches based on this representation. We also demonstrate smooth integration of
voxel-based objects inside traditional mesh-based scenes (Chap. 8).

The animation and deformation aspects are not the primary focus of this thesis and we just briefly
address real-time animation of voxel data in the last part of this work (Chap. 9). However, animation
and deformation (skinning) will clearly be part of the future work required to bring voxel represen-
tations as a fully usable rendering representation in modern video-game applications. Nevertheless,
the problem of animating voxel-based representations has been previously studied and realistic ways
of tackling the problem have been proposed, in particular for volumetric textures [Ney95, Ney98].
We strongly believe that shell map based approaches [PBFJ05, IMWO7] are very promising research
directions to tackle real-time animation of detailed voxel representations.

Figure 1.15. Left: Illustration of trilinear patches used for world to texture space mapping. Right: Scaffolding
mapped onto an animated flag surface. Sources: [PBFJ05, Ney9S§]

World to texture space parametrization Voxel representation can be used either to represent an
entire multi-scale scene that can be viewed from a very large range of distances, or as volumetric
textures [KK89, Ney98] in order to add fine-grained volumetric details inside a shell at the surface of
a rough triangle mesh. We see both applications as a similar problem, with the only difference being
the accuracy of the parametrization providing a mapping between the texture space, containing the
voxel data, and the world space of the scene. This parametrization is usually specified by trilinear
patches [Ney98, PBFJO5, IMWO07] with 3D texture coordinates affected to the vertices of the patch.

Since the voxel representation needs to be enclosed within this geometrical parametrization, the scale
at which it is defined limits the maximum degree of filtering that can be provided by the voxel rep-
resentation, and thus the maximum distance at which the object can be filtered. Indeed, if a patch
projects on less than one pixel, its content can no longer get pre-filtered.

Animation Two different ways of animating voxel data can be distinguished [Ney98]: the animated
deformation of the parametrization (both control points of the patches and texture coordinates) and
the actual animation of the content of the voxels.

Animation of voxel content supposes a per-frame update of the data that can be extremely costly. How-
ever, this approach allows grouping multiple objects inside the same (non-animated) parametrization,
and so allows a high degree of filtering (and a large range of view distances). It has the advantage

26

of preserving spatial structuring between represented objects, facilitating visibility determination for
example. We demonstrate such animation in chapter 9.

On the other hand, animation of the geometric parametrization (e.g. a shell made of trilinear patches)
allows us to deform displayed volume objects in world space. This allows us to use volumetric textures
exactly as a 3D generalization of traditional 2D texture mapping: Transformations can be computed
on a rough geometry representation (the geometric parametrization) while fine-grained volumetric de-
tails are simply interpolated inside it. With such approach, the scale of the parametrization geometry
also determines the precision of the animation that can be achieved. Precise animation requires the
parametrization geometry to be detailed enough. Thus, the scale of the parametrization must be cho-
sen as a compromise between the maximum degree of filtering, and the precision of the deformation.
We believe that a continuous range of mapping scales can be of use in different situations.

27

1.2 Other applications and usage of voxel representations

Beyond our primary motivation in using volume representation for geometry filtering, such represen-
tation also presents other usages and interesting properties. The most obvious reason for rendering
voxel representation is that voxels are a natural representation for volumetric phenomena and partici-
pating media.

1.2.1 Voxels for volumetric materials and effects

As described previously, depending on the scale on which you observe solid objects and materials,
their interaction with light can be more efficiently described either by a surface or by a volumetric
statistical density and lighting parameters information. There are also pure volumetric phenomena
like flames, foam, clouds or smoke that represent a semi-transparent participating medium and do not
actually have a well defined boundary surface at all. Such objects can only be described volumetri-
cally and are currently not much used in video-games and real-time applications because they are too
complex and too costly to render in real-time. Indeed, an accurate volumetric rendering of such ef-
fects requires an ordered traversal of the data that hardly fits inside the classical rasterization pipeline.
Volumetric or semi-volumetric phenomena are usually faked in video-games using impostors [K'W05]
but the rendering quality is usually low as shown in Figure 1.16 (left).

Figure 1.16. Left: Example of the rendering of a fall of water in a recent video game Source: Crysis 2 (Crytek).
Right: Example of cloud rendering for special effects Source: Partly Cloudy (Pixar).

1.2.2 Voxels in special effects

In contrast to video games, large multi-scale volumetric effects are very often used for offline special
effects by the movie industry [WBZC"10] as seen in Figure 1.17. Examples can be found in many
movie productions (e.g.,XXX, Lord of the Rings, The Day After Tomorrow, Pirates of the Caribbean,
The Mummy 3). Clouds, smoke, foam, splashes, and even non-fuzzy but extremely detailed geometric
data (e.g., boats in Pirates of the Caribbean) are all represented with voxels and rendered via vol-
ume rendering. For such effects, the voxel representation is usually generated from a combination
of multiple source data like particles, fluid simulations or detailed meshes. Rendering such phenom-
ena requires massive voxel grids and special effects companies such as Digital domain, Cinesite,
or Rhythm 'n Hues now massively rely on so-called voxel engines [Kis98, BTG03, Kap03, KHO5].
These off-line engines produce very realistic looking images, but at the cost of tera bytes of memory
and hours of rendering computations. The scene size and resolution is so large that voxels often do not
even fit in the computer’s memory. In addition to storage, the rendering of such data is also extremely
costly, even for previsualization, which is a serious problem for artists designing the scene.

28

Figure 1.17. Example of volumetric special effects in movie productions. Sources: The Day After Tomorow ,
XXX (Digital Domain)

1.2.3 Scan and simulation data

Voxels are also the native representation of much scientific data, like 3D scans or tomographic re-
constructions from radiological data (Fig. 1.18). Voxels are also used for representing simulation
processes like fluid simulations that are based on an Eulerian grid. The rendering of such datasets is
done through the use of scientific visualization techniques that were the first domain to deeply explore
volume rendering as described in Section 2.3.

Figure 1.18. Examples of the visualization of archaeological objects scanned using X-Rays and reconstructed
using tomography. Source: Digisens 2009

1.2.4 Voxels as an intermediary representation for authoring

Voxels are also used as an intermediate representation in the production pipeline of digital movies,
special effects or video games. Indeed, another interesting property of voxel representations is that
they allow very easy CSG operations. Thus, some modeling tools rely on voxels in order to store
implicit surfaces and allow easy virtual sculpting (Fig. 1.19, right). The same property is also used by
video game companies to easily model terrains (Fig. 1.19, left). In this context, the voxel represen-
tation is also used during the production phase to assimilate various object meshes into one unified
well-conditioned textured mesh and to easily generate geometrical LODs (in the spirit of [ABA02]).
In the same spirit, voxels are used by the special effects industry as an intermediate representation to
generate surface meshes from point clouds acquired using a scanning device in order to digitalizes
models or real-life objects that would be too complex for an artists to digitally recreate [For(O7].

29

Figure 1.19. Left: Voxel-based terrain authoring in Crytek’s CryEngine Source: Crytek (2010). Right: Highly
detailed model designed using 3DCoat voxel sculpting software Source: Francesco Mai (2010).

30

1.3 GPU development

Graphics hardware acceleration is a rapidly evolving area. Since a large part of our work focuses on
making the best use of the GPU (Graphics Processing Units) in order to propose an alternative voxel
rendering pipeline, we will quickly describe its main characteristics.

1.3.1 Hardware generations

During the last 10 years, commodity graphics hardware generations have

been driven by the evolution of Direct3D [Micl1], the most frequently

graphics API® in the video games industry. Each version of Direct3D

standardize a set of features called a "Shader Model" that must be sup-

ported by the programmable shader units of the GPU [Bly06]. Thus,

graphics hardware generations are traditionally designated by the version

of this Shader Model they support. The first "modern” graphics hard-

ware supporting programmable shading was SM1.0 (NVIDIA GeForce

3, Direct3D 8.0, 2001). Programmable shading evolved with more and

more flexibility up to today’s SM5.0 (NVIDIA GeForce GTX480, Di- Figure 1.20. Die of
rect3D 11.0). More details on the evolution of these shader models and the NVIDIA GF100 GPU,
the commodity graphics hardware in general can be found in the excellent Fermi architecture.
reference book of Akenine-Moller et al. [AMHHOS].

1.3.2 Compute mode

Since their creation, GPUs have been dedicated to the acceleration of the rasterization rendering
pipeline [AMHHOS]. But nowadays (since the introduction of programmable shading units), GPUs
evolve toward more generic high performance data parallel processors. In 2007, when this thesis
was started, NVIDIA SM4.0 (Direct3D 10.0) generation hardware was introduced with the support
of a new "compute" mode, dedicated to general purpose computation on the GPU. This mode acces-
sible through the CUDA API [NVI11a, Kir09] made it possible to bypass the rasterization pipeline
in order to use the GPU’s programmable shading units as high performance general purpose parallel
processors. This new way to address the GPU is radically changing the way we develop hardware
accelerated graphics algorithms, gradually moving toward more generic parallelism problems. All the
work present in this thesis has been prototyped and tested using OpenGL [Khr] grahics API and the
CUDA APIL

1.3.3 Limited video memory, limited bandwidth from the CPU

The video memory embedded on the graphics card is a high bandwidth low latency memory accessible
from the GPU. This memory is used to store textures, mesh definitions, framebuffers and constants
in graphics mode and can be accessed as a generic memory through pointers in CUDA. As illus-
trated in Figure 1.21, the bandwidth between the GPU and the video memory is hundreds of GB/s
(close to 200GB/s on current high end GPUs), that is at least 4 times higher than the bandwidth be-
tween the CPU and the main memory. Despite this high bandwidth, video memory accesses from
CUDA threads still represent hundreds of cycles of latency, while arithmetic operations only cost a
few cycles [WPSAMI10]. A cache hierarchy is used inside the GPU to speed-up accesses to the video
memory by allowing data reuse between threads.

3 Application Programming Interface

31

While access to the video memory is relatively fast from the GPU, the problem is that its amount is
usually limited compared to the system’s main memory (around 1/16 to 1/8 of the storage capacity),
thus limiting the amount of data that can be kept in this high speed memory. Worse yet, access to the
video memory from the CPU is tremendously slow compared to the access from the GPU (around 20
times slower). Therefore, transfers of data between the video memory and the system memory must
be limited to maintain high performance in real-time applications.

Figure 1.21. Illustration of memories and caches accessible by the GPU and connections to the rest of the sys-
tem. Source: Vincent Jordan, http://www.kde.cs. tsukuba.ac. jp/~vjordan/docs/master-thesis/
nvidia_gpu_archi/

When doing graphics rendering or a compute operation on today’s GPUs, all data needed for this
operation must have been previously loaded in video memory. GPUs do not provide a virtual mem-
ory mechanism with demand paging similar to the one provided in system memory by the operation
system [SGGOS8]. This implies that all data necessary for a rendering operation must fit into the video
memory.

1.3.4 Memory regions

The video memory embedded on the graphics card and accessed by the GPU is split into two main
types of memory regions: the global linear memory and the texture memory. The global memory
can be accessed from the parallel processing units of the GPU through the pointer in compute mode
exactly in the same way as the system memory of the CPU. On the other hand, the texture memory
is dedicated to the storage of 2D or 3D textures. It benefits from a special organization that enhances
2D and 3D spatial locality. This makes it possible to maximize the efficiency of the hardware caches
when textures are sampled at spatially close locations. Texture memory is not addressed directly
by the parallel processing units but is accessed through texture samplers that are special dedicated
hardware providing very fast linear interpolations.

http://www.kde.cs.tsukuba.ac.jp/~vjordan/docs/master-thesis/nvidia_gpu_archi/
http://www.kde.cs.tsukuba.ac.jp/~vjordan/docs/master-thesis/nvidia_gpu_archi/

32

1.3.5 Increasing gap between memory access speed and processing power

The current trend in the design of graphics hardware (and processors in general) is leading to a widen-
ing gap between memory access speed and data processing speed. While the increasing parallelism
of GPUs results in a performance improvement that tends to follow or even outperform Moore’s law
exponential growth prediction, memory bandwidth and data access speed grow at significantly slower
rates. This relative performance gap is illustrated in Figure 1.22.

Figure 1.22. Evolution of the performance gap between memory access speed and computational power.
Source: Elsevier Inc.

In such a context, the major computational bottleneck is usually data access rather than computation,
and this is true at all levels of the memory hierarchy, from video RAM to in-GPU parallel processor
clusters (Stream Multi Processors) L1 cache and shared memory. We expect this trend to continue
and to become even worse in the future. In such context the major challenge in high performance
rendering is to design rendering systems able to carefully manage bandwidth requirements and ensure
minimal and coherent data access, while maximizing cache efficiency and data reuse.

33

1.4 Problems and objectives

This thesis aims at making voxels an alternative rendering primitive for real-time applications. Voxel
representation has been intensively used in the past, especially in special effect productions, to render
participating media and volumetric effects. While such an application is also of interest for us, we aim
to introduce voxel representation as a standard primitive to render complex geometrical details and
filter multi-scale scenes in real-time applications.

We show that the current graphics hardware generation is ready to achieve high-quality massive vol-
ume renderings at interactive to real-time rates. Benefits such as filtering, occlusion culling, and
procedural data creation, as well as level-of-detail mechanisms are integrated in an efficient GPU
voxel engine. This enables us to obtain some of the visual quality that was previously reserved for
movie productions and enables the technique to be used in video-games or to previsualize special
effects. Our rendering pipeline is inspired by voxel engine tools used in special effect productions: it
lifts features known to be time and memory consuming (even in the scope of offline production) to
interactive and real-time rates.

1.4.1 Problems with voxel-based rendering

The first problem is to design a pre-filtered geometry model stored inside a voxel representation.

Despite their many advantages, the use of voxels has drawbacks and there are reasons why they are
less often employed than their triangular counterpart. Triangles have been natively supported on dedi-
cated graphics hardware since the beginning. Real-time high-quality voxel rendering has only become
feasible since the introduction of programmable shaders (Sec. 1.3).

But there is a more general problem, which is that detailed representations use gigantic amounts of
memory that cannot be stored on the graphics card. Hence, until recently, voxel effects in video games
were mostly limited to small volumes for gaseous materials or to the particular scenario of height-field
rendering. The development of an entire rendering system, capable of displaying complex voxel data
in real-time, is anything but trivial and will make possible a more involved usage of volumetric ren-
dering in real-time applications.

Thus, there are three major issues to overcome before making detailed rendering of massive volumes
a standard rendering primitive:

e How to store a pre-filtered voxel representation ?
e How to render it efficiently ?

e How to handle large amounts of voxel data ?

The storage problem

The first problem when dealing with voxel representation is the choice of the data structure. Basically,
voxel representation structures space within a regular grid of values. Such volume data can require
large amounts of memory, thus limiting the scene’s extent and resolution of details. As we have seen
in Section 1.1.2, we want to employ voxel data as a MIP-mapped representation of the geometry.
Such MIP-mapping scheme makes it possible to adapt the volume resolution used for rendering to the
screen resolution and the distance to the viewer.

In order to ensure high-quality rendering, our filtered voxel representation must provide enough reso-
lution so that each voxel project on an area not larger than one pixel of the screen. However, storing
such plain grids to adapt to the screen resolution can quickly represent gigabytes of data. For instance,

34

with a 1280 x 1024 screen resolution, displaying one voxel per pixel would require at least a 12803
voxels grid. Such a grid would already represent 8GB of data when storing only one RGBA value per
voxel, with one Byte per component.

Data has to stay in the video memory embedded on the graphics card in order to be quickly accessible
for rendering by the GPU. This memory is a high bandwidth, low latency memory connected to the
GPU and dedicated to graphics rendering operations, but it is many times smaller than the system
memory (Sec. 1.3). It is usually limited to 1GB or 1.5GB. In addition, in a video-game context, only
a small subset of this total amount of video memory would be available to store such rendering data.
Thus, the amount of memory required to store the voxel representation must be reduced and must be
kept as low as possible.

The bandwidth problem

By keeping voxel representation as compact as possible, our goal is to handle arbitrary large scenes
without any restriction on their memory occupancy. Thus, the scene can no longer be held entirely in
video memory. It implies the need for intelligent data streaming from larger, but slower memory units.
While the connection between the GPU and the video memory is high bandwidth and low latency, the
connection between the video memory and the larger system memory provides a lot lower bandwidth
and higher latency (Sec. 1.3). Thus, transfers between the large system memory and the limited video
memory are very costly and must be kept as low as possible. In such a context, during the exploration
of a scene, efficient data management techniques must be employed in order to maximize the reuse
of the data already loaded in video memory, while transferring only the minimum amount of required
new data.

1.4.2 Target scenes

It is true however, that a full volume is not always necessary. For com-
puter graphics scenes, it often suffices to have detail located mostly in a
layer at the interface between empty- and filled space. This is the case
when adding volumetric details within a thin shell at the surface of an
object as illustrated in the figure on the right, but it is also true for many
scenes that are composed of sharp or fuzzy objects lying in mostly empty
space (see Figure 1.23). Moreover, note that all real interfaces are fuzzy
at some point since opacity is also a question of scale: Physically, very
thin pieces of opaque material are transparent, and light always enters a
few steps in matter. Moreover, in terms of LOD the correct filtering of
infra-resolution occluders yields semi-transparency.

Our scheme is optimized for such an assumption: We expect details to be concentrated at interfaces be-
tween dense clusters and free space, i.e.,”’sparse twice”. More generally, we deal with high-frequency
interfaces between regions of low frequency within the density field: We treat constant areas (e.g.,
core regions) just like empty areas. Our key idea is to exploit this observation in the design of our
storage, rendering, streaming and visibility determination algorithms, together with the exploitation
of temporal coherency of visible elements during the exploration of a scene.

35

R
%
empty % %. dense
area %, constant
detailed o,] area
transition 8 detailed
homogeneous transition
o COr eo area
o"qgez; &
5,50 KN
Z 2 m
2% empty

area

Figure 1.23. In many scenes, details tend to be concentrated at interfaces between dense clusters and empty
space.

1.4.3 Objectives

Our main goal is to design a method capable of achieving the real-time rendering of very large amounts
of voxel data representing large and detailed pre-filtered geometrical scenes. Our primary objective
is to ensure a full scalability of the proposed solutions and algorithms, in order to allow an arbitrary
increase of the size or complexity of the scenes that can be rendered in real-time.

This was achieved through three main technical objectives:

¢ Rendering only visible data, at the needed resolution. In order to scale to large scenes, ren-
dering cost must be as much independent of the amount of data as possible, and should only be
dependent on the screen resolution and distance to the viewer.

¢ Loading only visible data, at the needed resolution. The key idea is that ideally, we want to
load and keep in video memory only the few voxels per pixel required for rendering.

o Exploiting time coherency and reusing loaded data. Once loaded into video memory, data
must be kept loaded as long as possible in order to maximize its reuse among multiple frames,
and minimize the cost of transferring data from system memory (or producing procedural data).

In addition, our approach must ensure a good integration inside current triangle-mesh based rendering
pipelines, and must be compatible with animation that we see as a future work.

36

1.5 Contributions

In order to bring memory-intensive voxel representation as a standard GPU primitive, we propose a
new rendering pipeline for high-performance visualization of large and detailed volumetric objects
and scenes. This thesis offers contributions on four core aspects:

¢ A model for appearance preserving pre-filtered geometry based on a voxel representation cou-
pled with a fast approximate cone tracing approach. Our voxel-based cone tracing relies on the
pre-filtered geometry model to efficiently approximate visibility and lighting integration inside
a cone footprint, providing cheap anti-aliasing (Chap. 4).

e A GPU-based sparse hierarchical data structure providing a compact storage, and an efficient
access and update to the pre-filtered voxel representation (Chap. 5).

e A GPU-based rendering algorithm, based on ray-casting, and efficiently using our data structure
and implementing our voxel cone-tracing (Chap. 6).

e An efficient GPU-based virtual memory scheme providing efficient caching and on-demand
streaming and data production inside our data structure updated dynamically. This mechanism
is entirely triggered by requests emitted per-ray directly during rendering, providing exact visi-
bility determination and minimal data production or loading (Chap. 7).

Based on these main contributions and our new voxel-based geometry representation, we demonstrate
fast rendering and exploration of very complex scenes and objects. In addition, we also demonstrate
two other rendering effects that our model allows to compute very efficiently: soft shadows and depth-
of-field (Chap. 8).

Finally, we introduce a new real-time approach to estimate two bounds indirect lighting as well as
very fast ambient occlusion, based on our pre-filtered geometry representation and voxel-based cone
tracing (Chap. 9).

Related work

In this chapter, we present the previous work on all aspects addressed in this thesis as well as the
different techniques we rely on. Our work builds on related work from different domains: scien-
tific visualization, visibility detection, real-time rendering, spatial data structures, GPU algorithms,
out-of-core data management, etc.

In Section 2.1 we first describe the previous work on anti-aliasing filtering for both geometry and
textures. In the next sections, we discuss the primary volume representations used in computer graph-
ics (Section 2.2) and in scientific visualization (Section 2.3). Then, we describe different techniques
employed to deal with complex and memory heavy datasets in Section 2.4. In this section, we first
describe available rendering techniques (Sec. 2.4.1), before presenting spatial data structures allow-
ing fast random access as well as data compaction (Sec. 2.4.2). We then present visibility culling
techniques (Sec. 2.4.3) and multi-resolution rendering approaches (Sec. 2.4.4). In the last section, we
present out-of-core data management techniques (Section 2.5.3).

2.1 Anti-aliasing filtering

Since first discussed by Crow [Cro77] in the middle of 1970s, anti-aliasing has been an highly studied
problem in computer graphics. There are two main antialiasing strategies: Supersampling, computed
in image space, and pre-filtering computed in object space. Prefiltering removes the high frequency
components of the geometry it samples, while supersampling averages together many samples over a
pixel area.

2.1.1 Geometry anti-aliasing filtering
Supersampling

The idea of supersampling is to trace an image at higher resolution and to average the results per
pixels. This operation is computationally intensive and very costly. In order to produce high qual-
ity antialiased images at more reasonable sample rates, Whitted suggested an adaptive supersam-
pling scheme in which pixels were recursively subdivided for further sampling only when neces-
sary [Whi80]. The problem is that such uniform and regular sampling, even when hierarchical, creates
visible patterns like moire patterns leading to a kind of aliasing.

Distribution (or distributed) ray-tracing (DRT) was introduced by Cook et al. [CPC84] in order to deal
with both spatial and temporal aliasing using multisampling. Cook et al. proposed to use stochastic
sampling of pixels using multiple rays that are spatially and temporally distributed to compute anti-
aliased images and to render non-singular effects such as depth of field, glossy reflection, motion blur,
and soft shadows. Since then, many stochastic sampling patterns have been proposed by various au-
thors, based on jittering, stratified, Poisson disks, Monte Carlo or quasi-Monte Carlo sampling. The

38

main problem with supersampling schemes is their cost in terms of rendering time, that stay very high
and keep their usage out of the range of interactive applications.

Figure 2.1. Illustration of a 5x per-pixel supersampling used for rendering a shaded sphere. Each direct
view-sample integrate indirect lighting following the rendering equation. Source: Don Fussell, University of
Texas at Austin, CS384G Computer Graphics course

Cone or beam tracing

In the context of ray-tracing, some techniques have been developed to solve the anti-aliasing problem
using so-called "analytic prefiltering" instead of explicit supersampling. These approaches allow the
computation of a single sample to estimate the color of a pixel, but lead to a more expensive primitive
intersection test and are not able to precisely estimate filtering of complex geometry.

Amanatides [Ama84] proposed to use cone tracing with an analytical cone-primitive intersection func-
tions. It uses a heuristic approximation for modelling the occlusion inside a cone. The major limitation
of the cone tracing algorithm is that this calculation is not easily performed except for simple objects,
and it is not suitable for complex aggregated surfaces. It can also generate artifacts caused by the vari-
ous integration approximations. This approach was extended by Kirk [Kir86] to handle reflections and
refractions on bump mapped surfaces. Similarly, Heckbert and Hanrahan [HH84] describe beam trac-
ing, that uses polygonal beams and a hybrid combination of polygon scan conversion and ray tracing.
Occlusion is correctly taken into account by clipping the beam with the occluding geometry. Similar
ideas were introduced by different researchers, like pencil tracing [STN87], and ray bounds [OMO90].

In order to reduce the cost resulting from complex intersection tests when tracing cones or beams,
Thomas et al. [TNF89] proposed to rely on a single ray per pixel but to artificially "grow" objects to
make sure object silhouettes were not missed during ray-tracing. This ensures a conservative visibility
detection and allows the detection of cases where the ray passes close to a surface in order to integrate
its filtered contribution. Like cone tracing, ray tracing with covers requires only one sample per pixel
to generate an antialiased image but is also limited to models made up of very simple primitives.

All the analytic-prefiltering approaches we just presented are very specialized and limited. They
worked well at the time they were developed, but they do not allow us to precisely filter complex
materials and reflectance models. In the current state of the art, antialiasing must deal with many dif-
ferent mechanisms that contribute to unwanted high frequencies, that would require special dedicated
strategies with analytic methods.

In order to provide antialiased rendering, we take inspiration from the cone and beam tracing ap-
proaches, but instead of relying on an analytical intersection function, we take advantage of our
voxel-based pre-filtered geometry representation as detailed in Section 4.2.

39

2.1.2 Texture filtering

Macroscopic geometry is traditionally represented using a triangle-based surface representation, while
the finer (microscopic level) scale is described by the local reflection model and traditionally encoded
into the BRDF [AMHHOS]. This micro-scale description is modulated at mesoscopic and macroscopic
levels by the geometrical description of objects, based on surface orientation. The mesoscopic level
interaction is generally described using a Normal Map (or Bump Map) representation. Pre-filtering
methods have been developed in order to ensure correct integration of these interactions into the shad-
ing model, along with a fast real-time evaluation [BN11]. We build upon this previous work on normal
map filtering to integrate correct meso-scale geometry orientation information into our voxel-based
geometry model, and allow high quality illumination (cf. Section 4.5).

Pre-filtering theory

The idea of pre-filtering consists in factoring the illumination equation. The color to be seen in a
screen pixel results from the integration of whatever is visible in the cone starting from the eye and
passing through this pixel. This cone covers an area on the shape to be rendered, so that the correct
shading is obtained by integrating the local illumination equation on this surface. Pre-filtering tech-
niques rely on the fact that, under some linearity assumptions, it is possible to factor-out from the
illumination integration some shading parameters when the result of the shading is averaged over an
area, and to filter them separately. This factorization is possible when the shading parameters that are
factored-out have a linear relationship to the final color, meaning they are involved only linearly in the
shading function.

Assuming that the effect of incoming radiance to a surface element is linear to the reflectance model,
the local illumination equation can be represented as:

Ip =1 f(N,E,L,C), 2.1

for a given surface element dA for which all terms can be considered constant. Iy is the radiance and
the reflected light, I; the radiance of the incident light, f() the function implementing the reflection
model based on the BRDF of the material, N the normal to the surface, E the view direction, L the
direction of the incident light, C the color of the surface. To get the total amount of reflected light
coming from a finite surface area A, this equation is integrated over A:

fIR(P)dA = fI;(P)f(N(P),E(P),L(P),C(P))dA, 2.2)

A A

Some terms can be considered constant over A, usually £ and L. Also, any quantity that is combined
linearly into f can be brought out of the integral and integrated separately. This is usually the case for
the color C, in this case, if everything else is constant over A, the equation becomes:

fIR(P)dA = [;(P)f(N,E,L) f C(P)dA, 2.3)
A

A

The MIP-mapping scheme

MIP-mapping has been introduced by Williams [Wil83] for filtering 2D color textures and can be
generalized to other surface attributes. The idea is to precompute the integrals corresponding to dif-
ferent scales of pre-filtered surface shading attributes and to store them into a set of texture maps of
decreasing resolutions (power-of-two reductions).

40

This allows us to use the appropriate resolution directly at rendering time thus providing a quasi-
correct antialiased image using only a single sample per pixel. Trilinear interpolation is usually used
in order to provide a continuous resolution, the area of integration being approximated by its bounding
square. More precise anisotropic filtering can also be used in order to approximate very closely the
area of integration on the surface.

Normal maps filtering

Normal maps decouple the (low resolution) geometry sampling density from the (high resolution)
normal sampling density but it is still necessary to filter it properly in order to avoid aliasing. MIP-
mapping geometrical data, such as normals or depths, is not as simple as MIP-mapping material color
information. Indeed, such parameters are not linear in the shading equation. Filtering normal map rep-
resentations has been a long studied problem [BN11]. All normal map filtering approaches rely upon
the idea of representing the normal information using a statistical distribution of normal directions
over a surface, that can be linearly combined. This representation is defined by a normal distribution
function (NDF) giving the density of normals as a function of direction for each point of a surface.

Figure 2.2. TIllustration of the use of a normal distribution function (NDF) to represent a V-shaped surface
element (a). In closeup view, each face normal is stored in a single pixel of the normal map (b). When this map
is filtered these pixels must be combined into a single pixel (c). Standard MIP-mapping averages the normals
to an effectively flat surface (e), while an NDF definition preserves this distribution of normals (d). This NDF
can be linearly convolved with the BRDF (f) to obtain an effective BRDF used for shading. Source: [HSRGO7]

Some methods approximate the normal distribution function (NDF) using a single Gaussian lobe.
[Sch97] proposed to describe this lobe using a mean direction obtained by perturbing a polygon nor-
mal using a bump map, and a roughness represented using covariance matrices and stored into a
separated roughness map. He also showed how a single standard deviation can be used in case of
isotropic roughness. [ON97] introduced a single 3D Gaussian lobe representation describing prob-
ability distributions on the entire sphere, instead of on an hemisphere as in previous methods. This
allows correct multi-scale combinations when at a coarser level, the probability of having normals
pointing in opposite directions increases. The 3D Gaussian density function is characterized by using
nine numbers, three for the mean direction and six for the matrix of second moments, that combine lin-
early. Following these works, [TokO5] proposed a very compact representation for isotropic roughness
allowing a fast GPU implementation. This representation relies on only one single non-normalized
mean direction vector generally computed by MIP-mapping a simple normal map. The length of this
mean vector is used as a simple consistency measure of surface normal directions and is used to esti-
mate the standard deviation of the Gaussian distribution. All these representations have the advantage
of being linearly interpolable and to allow linear MIP-maping

A single Gaussian lobe is often insufficient to model complex normal distributions at coarse resolu-
tions and a Gaussian mixture model (GMM) may be employed to model such distributions with more

41

precision. Early work on GMMs of NDFs representation has been done by [Fou92a, Fou92b] which
rely on a set of Phong lobes very similar to Gaussian lobes, and explains how to filter this represen-
tation. It relies on a basis with a large number of lobes to ensure a precise reconstruction but uses a
costly non-linear least-squares optimization to fit lobes. In addition, efficient MIP-mapping of these
highly-sampled distribution-based parameters is a challenging problem. [TL.Q"] enhance this model
by proposing a prefiltering technique that allows real-time MIP-map construction as well as a repre-
sentation that allows linear interpolation and the use of hardware filtering. Han et al. [HSRGO7] have
shown that, for a large class of common BRDFs, normal map filtering can be formalized as a spher-
ical convolution of the normal distribution function (NDF) and the BRDF. This formalism explains
many previous filtering techniques as special cases. In this method, the NDF is encoded either using
spherical harmonics (SH) for low frequency materials or von Mises-Fisher (VMF) distributions when
high frequencies are present. Unlike previous techniques, the SH representation makes all operations
(interpolation and MIP-mapping) linear, and no nonlinear fitting is required. In this representation the
BRDF is well decoupled from the NDF, enabling simultaneous changes of BRDF, lighting and view-
point. Spherical harmonics are good for low frequency distributions, but are impractical for higher-
frequency distributions due to the large number of coefficients required. The vMF representation is a
better fit for high frequency materials, but requires an offline optimization similarly to [Fou92b]. It
can create coherent lobes allowing hardware interpolation but require a complex reconstruction of the
distribution from this vMF representation.

42

2.2 Volume representations in Computer Graphics

2.2.1 Adding details and realistic appearance

Full voxel grids have been used in many applications to benefit from the visual complexity per-
mited by volumes for, e.g., fur [KK8&9], vegetation [DNO4, MNOO] (cf. Figure 2.3), or pseudo-
surfaces [Ney98]. It is true, however, that a full volume is not always needed. For computer graphics
scenes, it often suffices to have detail located mostly in a layer at the interface between empty and
filled space. The observation has been used in rendering in form of specialized representations such
as shell maps [PBFJ05, IMWO07], relief textures [OBMO0], bidirectional textures [TZ1."02], and hy-
pertextures [PH89]. Volumetric textures and shell maps [KK89, Ney98, PBFJ05] rely on a tiling of
a volume pattern within the layer. Even if our model allows instancing, our primary focus is to al-
low very large voxel representations containing no self-similar patterns, but instead a lot of different
user-generated or automatically-generated volume details. In addition, most of these methods do not
explicitly store volume data but rely on implicit procedural representation, while we want to display
arbitrary volume details possibly authored.

The family of relief map approaches [KTI"01, BT04, OBMO0, Wil05, BD0O6b, BD06a] fake or simu-
late the disparity below a surface using a 2.5D representation. Some recent extensions of relief maps
are indeed ray-marchers [BD06b] and rely on optimization structures [CS94] to accelerate empty
space traversal. However, we are interested in fully volumetric details and not only displaced ones.

In all cases, volume data is represented in a limited interface attached to an object’s surface, or to the
space around, as is the case for some recent GPU structures [LHNO5b, LHO6, LD07]. Nonetheless,
the storage and rendering of these previous methods are only efficient if the volume layer remains
small on the screen and the filtering problem is not addressed. Instead, we will deal with general
volumes and we will see how to filter them.

Figure 2.3. Example of forest rendering using volumetric tiles. Source: [DNO4]

General volumetric data sets also often consist of dense clusters in free space so-called sparse-
twice. One can benefit from clustered data, e.g., by compaction [KE02] or fast traversal of empty
space, avoidance of occluded regions [LMKO3], or by stopping rays when a certain opacity level
is reached [Sch05]. We also want to make use of regions of constant density for acceleration and
compaction purposes.

Because of the very detailed and realistic appearance that arises from the use of voxels, much effort
was spent on accelerating volume rendering. Many efficient methods assume that the entire volume is
present in the graphics card memory, thus highly limiting the possible detail level. Therefore, in the
context of real-time rendering, voxels remained mostly a valuable representation for distant models
(e.g., [MNOO, GMO5, DNO9]) because resolution can be kept low, counteracting the usual memory
cost.

43

Figure 2.4. Example of deformable volumetric representations used to render natural elements (left, trees and
grass) as well as hyper-texture like surface volumetric enhancement (fur, right).Source: [DN09]

2.2.2 Octree textures : sparse solid-texturing

Parameterizing a model in texture space for 2D texture mapping can be a very difficult problem on
surfaces with no natural parametrization. Distortions and seams are often introduced by this diffi-
cult process, particularly with representations such as subdivision surfaces, implicit surfaces or dense
polygonal meshes. Plenty of methods have been developed to provide automatic mapping but their
description is beyond the scope of this thesis [AMHHOS].

To overcome this problem, solid texture mapping was introduced in 1985 independently by Per-
lin [Pea85] and Peachey [Per85a]. The idea of solid texture mapping is to allow parametrization-free
texturing by directly using the surface’s position in 3D space as texture coordinates in a 3D (volume)
texture (cf. Figure 2.5). This approach was mainly designed for procedural texturing, with texels
generated in a volume enclosing the surfaces being rendered.

When using explicitly stored solid textures, one of the main problems is the huge amount of memory
required for storing high resolutions. Indeed, traditional volume textures are stored in a regular grid of
voxels, and their memory usage grows with the cube of the resolution. This has made them impracti-
cal for general use in computer graphics and confined their use to medical and scientific visualization
(cf. section 2.3).

Figure 2.5. Example of an octree texture used for solid texturing of objects without parametrization. Source:
[DGPR02]

In this context, Benson and Davis [BD02] and DeBry et al. [DGPRO2] independently developed "oc-
tree textures", an octree-based representation to encode solid textures in a compressed form, storing
only the subset of the volume that actually intersects the surface of a model. Octree textures are based
on the idea of extending traditional 2D texture MIP-mapping [Wil83] to 3D MIP-mapping. Higher
resolution texel values intersecting the surface of the model are stored in the leaves of the octree,
while averaged versions of them are stored in the inner nodes, corresponding to higher MIP-map lev-
els. When texturing an object rendered at a distance, a minification filter is used on texture data to
prevent aliasing. In the simple case of isotropic filtering, this filter is simply an average made over a
rectangle in a 2D texture’s parameter space. The size of this filter depends on the distance to the object
and determines which MIP-map level is used to get the required average. The same idea is used when

44

sampling inside an octree texture, with the size of the filter used to select the octree level. Continuous
interpolation is ensured between regions at different levels of detail using a subdivision strategy that
provides enough texels to apply the usual interpolation scheme at all levels.

Lefebvre et al. [LHNO5a] proposed a GPU implementation of octree textures. The octree is directly
stored in texture memory with a pointer-based representation to link the tree nodes together. At this
time, the GPUs did not allow us to index arbitrary memory from a shader and all the structure had
to be implemented as color texels inside a 3D texture. This texture-based structure is illustrated in
Figure 2.6. In this representation, each node is encoded as a 2 X 2 X 2 array of RGBA texels called
indirection grids, inside a 3D texture called the indirection pool. Each texel represents either a pointer
to an indirection grid of sub-nodes, or the color content of the leaves directly stored as an RGB value.
Pointers are encoded as RGB values representing 3D coordinates inside the indirection pool texture.
The Alpha component of each texel is used to distinguish between a pointer to a child and the content
of a leaf. Lefebvre et al. also describes an efficient point localisation scheme inside this octree struc-
ture based on a top-down traversal of the tree that allow logarithmic complexity lookups. Trilinear
interpolation of texel data is handled similarly to [BD02] by over-subdividing the tree to ensure that
all of the samples involved in the trilinear interpolation are included in the tree. 3D MIP maps data
inside the inner nodes of the structure are encoded using a separate 3D texture containing a color
information for each 2 X 2 X 2 array of texels.

Figure 2.6. Illustration of the storage in texture memory of the GPU octree texture structure from [LHNO5a].
The indirection pool encodes the tree, indirection grids are drawn with different colors and the grey cells contain
data. Source: [LHNO5a]

We will take inspiration from this representation for the design of our GPU data structure described
in Section 5. However in our context, one of the main weakness of the octree texture representation
described in the previous section is their poor performance when sampling trilinearly interpolated
values. Indeed, trilinear interpolation of the samples taken inside the volume representation is funda-
mental to provide a high quality rendering (cf. section 6.1.5). Octree texture do not provides a good
memory coherency and do not allow the use of hardware accelerated filtered texture sampling (cf.
section 1.3).

2.2.3 Brick maps

In the context of offline global illumination computation on the CPU, Christensen and Batali [CB044]
introduced the "brick map", a tiled 3D MIP-map representation for volume and surface data using a
hierarchical bricking scheme (cf. Section 2.4.4). Brick maps combine the idea of octree textures (cf.
Section 2.2.2), with a tiling scheme that stores voxels inside constant size bricks (small regular grids,
typically 163 voxels). Bricks are associated to each octree node, instead of storing them individually
directly inside the octree. Such tiling enables an efficient caching of the voxel data that are stored
coherently in memory, while providing empty space compaction.

Christensen and Batali [CB04a] described a caching scheme for their brick map structure used be-
tween the hard disk and the system memory. This scheme is only dedicated to the caching of the

45

bricks, while the octree structure itself is read once from disk and kept in memory. For the bricks,
their cache use a least-recently-used (LRU) replacement strategy managed entirely on the CPU, since
all rendering operations are also performed on the CPU.

Figure 2.7. Illustration of the brick map structure at multiple resolution used to stored irradiance values for a
car model. Source: [CB0O4a]

In our context, using a mixed structure like brick maps, combining an octree-based acceleration struc-
ture and coherent tiles of voxels, presents several advantages. First, similarly to the brick maps in
the context of system memory caching, the bricks represent interesting candidates for our GPU-based
caching scheme as coherent units of data that are easy to manipulate and manage for caching in video
memory. In addition, as we will see later, such regular grids of voxels allows us to rely on the hard-
ware texturing features of the GPU to perform fast trilinear interpolation and to benefit from a the 3D
caching scheme during sampling. Our structure shares similarities with brick maps, but is dynamic,
and, as a consequence, its content is view-dependent (through LOD (level-of-detail) and visibility).
In addition, our structure is adapted to a compact storage in video memory (Sec. 1.3), and is designed
to be efficiently accessed and traversed on the GPU. In contrast to brick maps, our typical use case
in video game requires a much more aggressive caching scheme not restricted to the bricks but also
applied on the octree structure itself.

46

2.3 Volume rendering for scientific visualization

For years, volume visualization has been mainly used to visualize simulated or acquired 3D datasets
in the domain of scientific visualization. For a complete survey of GPU volume rendering approaches
in this context, we refer the reader to the excellent book of Engel et al [EHK"06]. Here, we will
limit our discussion to the structure and algorithms most related to our work. A detailed overview of
volume rendering methods used in the special effects industry can be found in [WBZC"10].

In the context of scientific visualization, volume data usually represent scalar or vector values trans-
formed into opacity and shading parameters during rendering. This operation is usually done using a
transfer function that maps scalar density to optical coefficients. Volume rendering approaches are di-
vided into two categories: indirect and direct volume rendering. Indirect volume rendering explicitly
extracts geometric structures from volume data and renders such surface structures (meshes). On the
other hand, direct volume rendering (DVR) directly renders volumes without extracting surfaces and
that is the approach we are interested in.

In this section, we will first quickly explain the light transfer theory behind direct volume rendering,
and then present the most relevant rendering methods.

Figure 2.8. Examples of volume rendering results for scientific visualization. Sources: [Had02], [Sch05],
http://www. thefullwiki.org/Volume_rendering

2.3.1 Physics of volume light transport

In order to render our volumetric geometry representation, we rely on the previous work on direct
volume rendering [EHK ™06, HHS93]. The theory of direct volume rendering models light transport
into participating medium. It is based on geometrical optics that assumes that light propagates along
straight lines when there is no interaction with matter, in contrast to physical optics that considers the
wave character of light and its two possible states of polarization. With the approximations of geo-
metrical optics, light does not interact with itself and the interaction of light with surfaces and volume
elements can be described within the framework of linear light transport theory [CZP68]. We will
discuss the basis of this theory in the next section and see how to solve the equation of light transfer
that is the central equation of light transport theory.

Basis of light transfer

The light energy is described by its radiance 1(X, w) , also called specific intensity. It describes the
radiation field at any point x, giving the light direction w. It is expressed in W-s7~!-m~2 and is defined

as:
Yy

Ixw)= — 2
X0) = A cosedadr’

2.4)

http://www.thefullwiki.org/Volume_rendering

47

with Q the radiant energy (in Joules), A the unit area (in m?), 6 the angle between light direction w
and the normal vector of the surface A, and € the solid angle (in steradians).

The radiance along a light ray is affected when it passes through a participating medium. This interac-
tion between light and matter is modelled as three different types of interactions: Emission, Absorption
and Scattering effects.

Emission describes the amount of radiative energy of light that is directly emitted by the participat-
ing media. Absorption is the amount of energy that is absorbed by the material. Finally Scattering
describes the amount of energy that is scattered by the material, changing the direction of the prop-
agation of the light. Scattering can both increase (in-scattering) and reduce (out-scattering) radiative
energy along a light ray.

The equation for the transfer of light is obtained by combining these three effects:
w- VX, w) = —xIx,w) +n, 2.5

where VI is the directional derivative (the gradient) expressed using the "nabla" operator V = (%, (;ly, a%).
The dot product between the light direction w and the gradient of radiance V,/ describes the direc-
tional derivative taken along the light direction. The term y (X, w) is the total absorption coefficient. It
is defined as the sum of «(X, w), the true absorption coefficient, and o (X, w) the out-scattering coeffi-
cient:

Y =k+o0, (2.6)

The ratio o/ of scattering coefficient over the total absorption coeflicient is the albedo. An albedo of
one means that no absorption appears at all, this is the case of perfect scattering.

The term n(x, w) of the equation of light transfer is the total emission coefficient that is the sum of the
true emission coefficient ¢(X, w) and the in-scattering coefficient j(x, w):

n=q+j 2.7)

While «, o and ¢ are optical material properties, the in-scattering coefficient j needs to be computed
by integrating the contributions of all incoming light directions over the sphere:

JX, w) = %r fO'(X, Npx, W', w) (X, w)dw' (2.8)
0

The contributions from incident lights /(x, ") are weighted by both the scattering coefficient g and a
phase function p(x, ', w) that describes the probability of scattering from the incoming direction «’
to the accounted direction w.

Since we usually consider light transfer along a single ray, we can rewrite the equation of light transfer
when considering a parameter s along a line segment expressed by X = p + sw, with p being some
arbitrary reference point:

dl
d(s) = —x(9HI(s) + n(s) (2.9)
s

Emission-Absorption optical model

For the following work, we will concentrate on the emission-absorption optical model [EHK 06,
HHSO93]. This model neglects scattering and indirect illumination effects and represents only local

48

light emission and absorption. This is the most widely used model for volume rendering in scientific
visualization applications. Within this model, the equation of the light transfer reduces to:

dl(s)
ds

= —k($)I(s) + q(s) (2.10)

This integro-differential equation can be solved transformed into a pure integral equation by solving
it along the direction of the ray between a starting point s = sg and an end point s = D, relative to
back-to-front traversal. Boundary conditions also need to be fixed and we define I the initial radiance
along the ray at s = sg. This leads to the volume rendering integral [EHK06] :

D
I(D) = Iye ™00D) 4 f q(s)e™P) ds 21D

S0

The term 7(s1, 52) is called the optical depth or optical thickness between position s; and s, and is de-
fined as a measure of the proportion of radiation absorbed or scattered along a path through a partially
transparent medium. It is defined as:

52

T(s1,82) = fk(t) dt (2.12)

51

The corresponding transparency 7°(sy, s2) (in [0, 1]) is defined as :

T(s1, 7) = e 7152 (2.13)
This leads to the following simplified version of the volume rendering integral:

D
I(D) = Iy T(sp, D) + f q(s) T(s, D) ds (2.14)

S0

Figure 2.9. Illustration of the volume rendering integration between ¢ and D. Source [Had02]

Evaluating the volume rendering integral

In the general case, the volume rendering integral 2.14 can not be evaluated analytically. This inte-
gration is usually approximated by a Riemann sum, splitting the integration domain into n subsequent
intervals described by locations 5o < s; < ... < s,, and not necessarily with equal lengths. Thus,
based on equation 2.14, the radiance at a given location s; can be evaluated as:

49

Si

I1(si)) = I(si-1) T(si-1, 80) + ICI(S) T(s,si)ds (2.15)

Sic1

This function is simplified by introducing the term 7; = T(s;_1, s;) the transparency of the i interval
and ¢; = fs f’l q(s) T (s, s;) ds the radiance contribution of this interval. Then, by recursively evaluating
this function over all points of the interval, the discrete version of the volume rendering integral is
obtained:

I(D) = Z (c,-]—[T-}, with co = I(s0) (2.16)

=0\ j=i+l

Please note that the radiance contribution c¢; is wavelength dependent and is usually assimilated to a
color contribution and so is the resulting integrated radiance /(D). Finally, the transparency T; and
color contribution ¢; need to be evaluated for each interval. This is generally done using a piecewise-
constant or piecewise-linear approximation of the functions between two sampling points. With a
piecewise constant approximation, the transparency 7; over a ith segment is approximated as:

T[~ e—K(Sl')A,' , (217)

with A; the length of the ith interval. The radiance/color c; is approximated as:
ci = q(s)A; (2.18)

Incremental evaluation

The discrete version of the volume rendering integral presented in equation 2.16 is evaluated incre-
mentally, with either a front-to-back (starting from the eye) or a back-to-front compositing scheme.
The front-to-back compositing scheme is the most usually used due to the fact that it allows to stop the
evaluation prematurely when the accumulated transparency reaches zero and then no more radiance
can be accumulated [KW03a].

The front-to-back evaluation can be expressed recursively based on equation 2.16:

I(s;)
T(s;)

I(siv1) + T(siv1) Ci (2.19)
T(siv1) T;

width I(s,) = ¢, and T(s,) = T,. This leads to the following front-to-back compositing scheme, with
opacity @ definedasa =1-T:

Ciss — Cuyg+ (1 —agy)Csre (2.20)
Qgsr < Qg+ (1 - a'dst) Asre
2.3.2 Main volume rendering approaches

In order to apply the volume rendering integral we described in the previous section, three main classes
of direct volume rendering approaches can be found in the literature.

50

Splatting The first and oldest family encompasses approaches based on the splatting of individual
voxels using a reconstruction kernel (usually Gaussian) in the spirit of [Wes90]. The splatting ap-
proach only provides a poor approximation of the volume rendering integral presented in Section 2.3.1
and is not compatible with high quality rendering.

Texture slicing Texture slicing approaches are projective (object-order) approaches that were
mainly designed to support graphics hardware acceleration. It has been the most widely used and
most efficient class of approaches for years. They rely on the projection on screen of textured geo-
metric slices of the volume as illustrated in Figure 2.10.

Figure 2.10. Illustration of the texture slicing approach for direct volume rendering. Source: [WE9S]

The basic idea is to store the volume either in a set of 2D textures or into a 3D texture, and to ras-
terize multiple slices located into the 3D volume domain and used to sample the texture. The slices
can be either aligned on the screen plane [WE9S] or on volume axis [RSEB"00], and sorted either
front-to-back of back-to-front depending on the blending function used to accumulate fragments on
the screen. The use of slicing with texture mapping for volume rendering was introduced by [CN94]
and [CCF94]. This approach has since been revisited, fine-tuned and extended many times in the lit-
erature, especially to follow graphics hardware evolution [GK96, RSEBT00]. A lot of work has also
been done on efficient transfer function [EKEO1], or more complex illumination models [KPHEO2].
But these approaches have many drawbacks. One of the main drawbacks is that they are restricted
to uniform grids and are difficult to adapt for adaptive multi-resolution rendering. In addition, such
approaches lack flexibility in the evaluation of the volume rendering integral (restricted to a frustum
projection) and are highly fillrate (and therefore bandwidth) consuming. Indeed, texture fetch oper-
ations, shading operations and per-pixel blending operations are performed for a significant number
of fragments that do not contribute to the final image because the approach does not allow an early
termination of the evaluation in a per-pixel basis.

Volume ray-casting Volume ray-casting is a forward (image-order) method. The idea is to trace
rays inside the volume data from the camera in order to evaluate directly the volume rendering integral
as illustrated in Figure 2.13. With the evolution of the graphics hardware and since the advance of
programmable shading, GPU based volume ray-casting is now the most popular method for volume
rendering in interactive applications.

51

Figure 2.11. Illustration of volume raycasting for direct volume rendering. Source: [EHK06]

Volume ray-casting, also called volume ray-tracing (if secondary rays are used), was first introduced
by Levoy [Lev88] to display surfaces from binary volume data and improved by him [Lev90] for per-
formance with CPU based-implementations. Levoy was followed by many others who enhanced the
approach further for CPU implementations [DH92, YS93, FS97].

Figure 2.12. Illustration the ray-casting scheme where all viewing rays are processed simultaneously. Source:
[RGW*03]

Kriiger and Westermann [K'W03a] were the first to bring volume ray-casting to real-time implemen-
tation on the GPU using the newly introduced pixel shaders 2.0 that provide flexible per-fragment
texture fetches and arithmetic. At this time, the transition from texture slicing approaches (that were
the standard for real-time volume rendering thanks to the acceleration by fixed pipeline graphics
hardware) to volume ray-casting was driven by the evolution of commodity graphics hardware from
fixed function pipelines to programmable ones that spawned completely new classes of graphics al-
gorithms [PBMHO02].

Figure 2.13. Examples of images rendered using volume ray-casting. Sources: [KW03a, Sch05]

In order to optimize bandwidth usage and computations, Kriiger performs an early-ray termination to
stop the evaluation of pixels that have already reached a saturated opacity. Due to the lack of condi-
tional branching in pixel shaders model 2.0, a multi-pass algorithm is used in order to split the ray

52

evaluation and allows using the early z-test mechanism of the GPU to prevent continuation of termi-
nated rays. Kriiger’s approach was enhanced by Scharsach [Sch05] and Stegmaier et al. [SSKEO05]
who relied on a single-pass algorithm and performed early-ray termination, thanks to the conditional
branching feature and additional flexibility of the pixel shaders model 3.0. Scharsach proposed a way
to enable fly-through applications, making it possible to place the viewpoint into the dataset, and to
correctly intersect the rendered dataset with normal OpenGL geometry. He also proposed a simple
scheme for empty-space skipping based on a 2-way blocking scheme, subdividing the volume into
constant size blocks stored into a 3D texture and referenced from a second indirection texture.

Volume ray-casting is now the fastest approach to render volume data, it offers a great flexibility in
the way the volume rendering integral is evaluated, and is not restricted to a view frustum. It allows
arbitrary evaluation direction and per-ray control as well as secondary rays evaluation. That is why
we chose to rely on a ray-casting approach for our rendering algorithm, combined with a spatial data
structure as detailed in Chapter 6.

53

2.4 Managing the complexity: Representations and algorithms

Interactive visualization of massive models has been a challenging problem and a very active area for
years, especially in the domain of scientific visualization where massive datasets need to be visual-
ized [GKYO08]. In the context of massive datasets visualization, efficient data access and data manage-
ment are the keys for providing interactive visualization. In addition, as explained in Section 1.3.5,
these key elements become especially critical in the current context of a limited improvement of mem-
ory accesses performance of high performance GPU architectures compared to processing power.

The choice of the rendering algorithm (Sec. 2.4.1) as well as the data structure (Sec. 2.4.2) plays an im-
portant role in the scalability of the visualization approach. In addition, visibility culling (Sec. 2.4.3)
and view-dependent multi-resolution (Sec. 2.4.4) are key techniques to optimize data access.

2.4.1 Rendering

Any rendering operation is relative to a sorting problem for each pixel of the final image, which con-
sists of determining what part of the rendered model is closer to the viewer. The various approaches
of rendering vary in the order in which this sorting operation is performed, this can be image-order,
or object-order. There are basically two classes of rendering algorithms that can be used for real-time
applications:

e Rasterization with z-buffer that performs object-order visibility determination by traversing ob-
jects and scene primitives (usually polygons), projecting and rasterizing them on the screen.

e Ray-tracing that performs image-order visibility determination by computing ray-primitive in-
tersections for each pixel.

Although the ray tracing and rasterization fields have independently developed their own approaches
in the past, the underlying issues faced when dealing with massive models are somewhat similar, and
state-of-the-art systems are converging towards applying similar solutions.

Rasterization In terms of memory access efficiency, rasterization theoretically offers better data
access locality and cache coherency. Per-batch rendering attributes can be shared between primitives
and per-primitive attributes can be read sequentially. In addition, transform and shading computations
are very coherent inside batches of primitives, ensuring an efficient parallelization of computations.
This explains the success of rasterization for real-time rendering applications, and its native imple-
mentation inside graphics hardware. However, rasterization-based approaches are limited to visibility
determination inside a view frustum. In addition, object-order approach with no special data structure
provides a linear time complexity in the number of scene primitives. All data have to be read in order
to be visibility tested, which stays reasonable for relatively small scenes, but becomes prohibitive for
very large datasets.

Interactive ray-tracing On the other hand, ray-tracing algorithms [Whi80, CPC84] support arbi-
trary point-to-point visibility determination that allows easier computation of global lighting effects.
In their most basic form, ray-tracing techniques are also limited to linear time complexity relative to
the number of primitives. Usually, the term ray-casting is used to refer to once-bound ray-tracing, in
the context of of volume rendering (Sec. 2.3.2) or when it is used only for visibility computations.
Ray-tracing usually designate Whitted’s [Whi80] algorithm, with multiple bounces used to compute
advanced global lighting effects.

54

2.4.2 Spatial data structures

In order to enable rendering in sub-linear time complexity, spatial index structures must be employed.
Such scene structuring is based on a tree structure that provides a fast random access to the scene
geometry and allows visibility queries to be answered in logarithmic time. Thanks to such structures,
only the parts of the scene that are visible need to be accessed. Spatial structure can be employed to
accelerate both rasterization and ray-tracing rendering algortithms. The main difference is the gran-
ularity at which they can act. With ray-tracing, such structure allows per-ray visibility detection and
ordered traversal of objects data. With rasterisation, a much larger granularity has to be used (usually
screen granularity) in order to preserve object-order efficient GPU rendering. Reducing this granular-
ity is difficult with today’s rasterization hardware due to the fact that rasterization commands have to
be emitted from the CPU, preventing an efficient parallel traversal of the structure on the GPU.

Many ray-tracing systems based on various spatial data structures have been designed to display
massive datasets and such approaches start to be efficiently implemented on today’s GPUs (thanks
to their generic computing capabilities, cf. section 1.3.2). A comprehensive survey, analysis and
comparison of acceleration structures for CPU ray-tracing applications can be found in Havran’s
PhD thesis [Hav00]. For the state of the art in interactive ray tracing, we refer the reader to Wald
and Slusallek [WMG*07]. A large variety of special data structures has been used to acceler-
ate the intersection tests of ray tracing, like regular grids [CN94, PBMHO02, Pur04], BVH, KD-
Trees [EVG04, FSO5, HSHHO7]. A comparison of acceleration structures for GPU ray-tracing that
covers uniform grid, Kd-tree and BVH (Bounding Volume Hierarchy) can be found in Niels Thrane
and Lars Ole Simonsen Master’s thesis [TS05]. Each structure has its own advantages depending on
the context in which they are used.

Complex data structures on the GPU

The main difficulty when working on the GPU is to efficiently implement such a data structure so
that it can be quickly accessed and provides a good usage of the GPU resources, in particular of the
texture hardware units. Lefebvre et al. [[LHNO5a, LD07] proposed a GPU implementation for octrees
directly stored in texture memory with a pointer-based representation. Lefebvre and Hoppe [LLHO06]
proposed to rely on a multidimensional hash function evaluated on the GPU to encode sparse 2D and
3D images. Lefohn at al. [LKS"06] proposed a common framework to implement various hierarchi-
cal data structures on the GPU through a virtual memory abstraction (Fig. 2.14). These work were
interesting and defined the foundation for efficient GPU implementation of complex data structures.
However, their implementation now tends to become obsolete with the introduction of the compute
(CUDA) paradigm to address the GPU that provides more flexible and more standard memory access
(Sec. 1.3.2).

Figure 2.14. Tllustration of the three components of the multiresolution "adaptive page table" structure
from [LKS706] used to represent a quadtree for an adaptive shadow mapping example. Source: [LKST06]

55

Volume compression and empty space skipping

In the context of volume rendering, in addition to the fast random access, spatial data structures
provide data compression through empty space skipping. Many decomposition schemes have been
proposed in order to reduce the percentage of empty voxels represented in the texture memory. Early
volume rendering papers like [SFH97] and [TWTT99] proposed to use an octree to deal with large
datasets by skipping empty regions of the volume. Empty regions are detected during preprocessing
and only non-void regions are loaded into texture memory as leaves of the octree structure. An octree
is a hierarchical binary decomposition of 3D-space along its component axes [Kno08]. Octrees pro-
vide a regular subdivision of space with non-overlapping node spacing, thus are well suited to store
rectilinear voxel data. As detailed in section 2.4.4, octrees also allow data to be stored with adaptive
levels of resolution. As we will see in chapter 5, we chose to base our GPU data structure on an octree
in order to take advantage of these structuring and compression properties.

2.4.3 Visibility culling

The first obvious way to deal with the complexity of the scene is to be able to detect and discard
all the parts that are not visible from a given point of view. Visibility determination has been a fun-
damental problem in computer graphics since the very beginning. Determining visible elements is
important for many different rendering paradigms, ranging from ray tracing [Wal04, WMG*07], to
point clouds [WBB*07], or volume rendering (cf. Section 2.3). The first usage for visibility deter-
mination is visibility culling that aims at quickly rejecting invisible geometry before actual rendering
is performed. This allows the reduction of the total amount of computation needed to render a scene
in the context of object-order rendering. In the context of out-of-core rendering of massive scenes or
objects, visibility determination is also a critical component used to prevent loading in memory all
data that will not contribute to the final image.

Traditionally, visibility culling 1is split into three tasks illustrated in Figure 2.15:

e Backface culling Back-face culling applies only to
surface-based rendering and avoids rendering primi-
tives that do not face the camera.

e View-frustum culling Viewing-frustum culling avoid
rendering primitives located outside from the view
frustum. Many hierarchical techniques based on hier-
archical space partitioning structures (Sec. 2.4.1) have
been developed to speed-up the frustum culling pro-
cess [BEW*98, AMO0, Cla76].

e Occlusion culling The most complex and most diffi- Figure 2.15. Tllustration of the three types
cult task is in fact occlusion culling. Occlusion culling of visibility culling tasks: view frustum
aims to avoid rendering primitives that are occluded culling, back-face culling and occlusion
by some other part of the scene. This is also the most culling. Source: [COCSDO3b]
studied visibility problem and that is usually the type
of culling designated by the term "visibility culling".

Occlusion culling

Conservative prediction of visibility in scenes is an important and difficult topic in Computer Graph-
ics. A survey of this domain is beyond the scope of this thesis. A comprehensive survey of occlusion

56

culling approaches was published by Cohen-Or et al. [COCSDO03b] and another survey from Bittner
and Wonka [BW03] discusses visibility culling in the context of more general visibility problems.

Visibility determination approaches are generally classified into from-point and from-region visibil-
ity algorithms. From-region algorithms rely on the precomputation of a potentially visible set (PVS)
for points in cells of a fixed subdivision of the scene and are processed in an offline preprocessing
step. These preprocessing algorithms have no runtime overhead but are hard to compute accurately
for general environments and only work for static scenes. For aggressive visibility sampling [NB04],
ray-tracing can be a good option to interactively compute from-region visibility [BMW*09]. On the
other hand, from-point algorithms are computed online for each particular viewpoint and allow for
fully dynamic scenes. Most online occlusion culling algorithms work in image space, usually us-
ing rasterization. Recent image-based occlusion culling algorithms exploit graphics hardware built-in
occlusion query mechanism to perform online visibility culling [KSO1]. Before the integration of
such dedicated hardware support, software online occlusion culling was mostly considered too costly
to be used. There are some worthy exceptions such as Hierarchical Occlusion Maps from Zhang et
al. [ZMHHO97] or the dPVS portable framework from Aila et al. [AMO4].

Hardware occlusion queries

Hardware occlusion queries are relatively lightweight operations that return the number of pixels
that passed the z-buffer test during the rasterization of a proxy geometry, without having to read
back the entire frame buffer. Their main advantage is their generality and speed. However, hard-
ware occlusion queries require read-back of information from the graphics card, and due to the
long graphics pipeline this introduce a high latency when the application waits for the query to
return. In order to reduce the overhead and latency of hardware occlusion queries and to op-
timize their scheduling, spatio-temporal coherence is exploited with coherent hierarchical culling
(CHC) [BWPP04, GBK06, CBWRO07, MBWO08]. Most of these techniques rely on a hierarchical
scene structuring traversed in front-to-back order with a clever interleaving in order to reduce the
number query issued and to mask latency overhead as much as possible.

Figure 2.16. Left: A sample view point in a city scene with scene subdivision and all state changes required by
a CHC algorithm [BWPPO04] illustrated with different colors. Right: Illustration of CPU stalls and GPU star-
vation when interleaving occlusion queries with rendering (top). Qn : querying, Rn : rendering, Cn : culling.
More efficient query scheduling from [BWPP04] (Bottom). Sources: [MBWOS, BWPP04]

Gobbetti et al. exploited such hardware occlusion queries in the context of visualization of large
scenes with a mixed volume-surface representation [GMO05], and more recently full volume datasets
rendering [GMAGO8]. They rely on optimized occlusion queries [BWPP04] based on a screen parti-
tioning to detect visible parts of a tree-based space subdivision structure maintained off-core. Query
results are used to trigger loading of data for required parts of the scene.

But even when interleaved intelligently, hardware occlusion queries are complex to efficiently put
into place and still result in significant overheads. Additional costs come mainly from the GPU-CPU
synchronization induced by this approach and the serial processing of query results that must be done
on the CPU. They also come from rendering steps of proxy geometry that have to be interleaved with

57

normal scene rendering. In addition to being costly, occlusion query based visibility can only provide
a rough granularity resulting in an highly over-conservative visibility approximation.

We experimented such an approach in early work on our voxel rendering model [CNO7], but we
quickly moved it further apart due to its poor performance in our context and the low granularity in
visibility tests. Instead, as we will see in Chapter 7, we turned toward a solution based on direct
tracking of visibility during rendering, that allows us to directly exploit the visibility determination
happening during ray-tracing.

2.4.4 Multiresolution rendering approaches for volume rendering

The issue of large volumes has been an important issue since the early usage of volume rendering,
even before GPU implementations. Compression inside a sparse data structure allows a significant
reduction of the amount of volumetric data to manipulate. However, even compressed inside a sparse
data structure, the volume datasets we are interested in still represent gigabytes of memory and do not
fit inside the video memory of the graphics card for rendering (cf. Section 1.3).

The idea of multiresolution approaches for volume rendering is to adapt the rendering resolution to
the distance to the viewer and data homogeneity. To do so, they break down a single large volume
into several smaller ones called bricks and rely on a spatial hierarchy with recursive subdivision and
increasing resolution (usually an octree) to index these bricks. The hierarchy is built for the data set
in a pre-processing step and each node of the spatial hierarchy contains a certain part of the volume
within its bounding box at a specific resolution.

Figure 2.17. Illustration of the difference between flat and hierarchical bricking schemes. Source [BHMF0S]

As shown in Figure 2.17, either the resolution of the spatial structure or the resolution of the bricks can
be adapted [BHMFO8]. Adapting the resolution of the octree leads to hierarchical bricking schemes,
while adapting the resolution of the bricks leads to flat bricking schemes with a constant spatial sub-
division. Thus, flat bricking schemes do not allow refining only non-empty regions and are limited to
relatively low resolution datasets.

As for any rendering approach, multiresolution rendering approaches can be either object-order or
image-order. Object-order approaches are projective approaches that traverse and render sub-parts
of the volume independently. Image-order approaches are ray-casting approaches that start from the
view and traverse the structure per pixel in order to compute the volume rendering integral.

Early texture slicing based approaches

LaMar et al. [LLHJ99] proposed the first multiresolution scheme based on an octree structure segment-
ing the dataset into a set of block tiles (also called bricks) at different resolution levels. These different
resolution levels are kept in memory and blocks are chosen according to a view-dependent criteria for
rendering. Rendering is done adaptively by traversing the structure on the CPU and selecting block
tiles to be transferred in video memory and rendered one after the other. High resolution tiles are

58

selected close to the viewer, and low resolution away from it. Block tiles are rendered independently
using a slicing approach(cf. Section 2.3.2) and results are combined in the framebuffer. Boada et
al. [BNSO1] presented a similar approach with the same data structure but introduced the idea of us-
ing a frequency-based level-of-detail selection based on a data homogeneity measure when building
the set of octree nodes to be stored for rendering (the cut). In these approaches, both the octree depth
and the resolution of the bricks can be adapted and chosen for rendering based on various impor-
tance criteria. Unfortunately, they do not provide totally artifact-free rendering and spatial continuous
transitions and interpolation between resolutions levels is not ensured.

Weiler et al. [WWH"00] improve on LaMar et al. [LHJ99] by explicitly addressing the avoidance of
interpolation errors and discontinuity artifacts between bricks of the same or different levels-of-detail
inside a given cut. Continuous interpolation between adjacent bricks at the same level is ensured by
duplicating and sharing boundary voxels of adjacent bricks. Boundaries between bricks of different
resolution are managed by copying and duplicating coarser values of an adjacent brick in the boundary
voxels of the finer brick. This scheme restricts brick transitions to differ by at most one level in order
to maintain the continuity between levels (Fig. 2.18). This problem of inter-bricks interpolation was
tackled by the following research that proposed improved interpolation schemes [LLLLY 06, BHMFOg].

Even if they provide spatial inter-blocks interpolation inside a given set of bricks, these techniques
do not ensure a continuous temporal transition between different levels-of-details. No interpolation
is done between LODs (quadrilinear filtering). Thus, transitions from one resolution to another in a
given region is not continuous, leading to popping artifacts. Our scheme provides a smooth transition
between resolutions (cf. chapter 6).

Figure 2.18. Illustration of the block tile storage with border sharing used by [WWH"00]

In order to reduce even more the amount of data stored in system memory, [GWGS02] proposed a
compressed hierarchical wavelet representation for the volume data generated in a preprocessing step
and stored on disk. This wavelet representation is decompressed on-the-fly on the CPU during render-
ing in order to produce regular voxel grids transferred in texture memory and rendered using slicing
(cf. Figure 2.19). It was one of the first papers to demonstrate interactive exploration of a large dataset
on a conventional PC with a graphics card.

Figure 2.19. Left: Multi-resolution rendering with view-plane aligned slices. Right: Copy of adjacent voxels
at different resolution into 3d-texture blocks for correct interpolation. Source: [GWGS02]

59

This approach was improved in [GS04] that introduces a method for coarse early termination of the
rendering evaluation. It is based on occlusion tests that prevent occluded data to be loaded and ren-
dered. An approximated occlusion calculation is done prior to the rendering. It is computed using an
approximated occlusion map at a fixed resolution built using a software raycaster based on cell pro-
jection and a uniform conservative (minimum) opacity for each block. Although relatively efficient,
the approach involves much CPU work, does not achieve temporal continuity, nor does it include
occlusion tests to cull hidden parts of the volume.

Object-order GPU volume-raycasting based approaches

All multiresolution approaches presented previously relied on a texture slicing approach (cf. Sec-
tion 2.3.2) to render sub-blocks of the original volume. Slice-based hierarchical volume rendering
approaches make it possible to skip empty blocks from rendering and, to a limited extent, to exploit
an opacity map for occlusion culling. However, these approaches are rasterization limited, hard to
optimize algorithmically and suffers from precision problems. When the graphics hardware became
flexible enough to allow it, multiresolution techniques based on volume ray-casting (cf. section 2.3.2)
started to appear. Object-order volume raycasting approaches are very similar to hierarchical texture
slicing based approaches but render each voxel tiles separately using volume raycasting on the GPU.

Figure 2.20. Comparison of [KWAHO6] of the image quality of slice-based (middle) and GPU-assisted
raycasting (right) approaches for rendering a cosmological AMR (Adaptive Mesh Refinement) dataset (left).
Artifacts in the slice-based approach are due to insufficient framebuffer precision to correctly blend highly-
transparent slices. .Source: [KWAHO06]

Such approach was first proposed by Hong et al. [HQKO05] using an octree structure and was extended
to AMR! (Adaptive Mesh Refinement) datasets by Moller et al. [KWAHO06]. Méller et al. compared
both the rendering performance and the image quality between texture slicing and volume raycasing
approaches. Image quality comparison is illustrated in Figure 2.20 on their test dataset.

The result for the texture slicing approach shows severe rendering artifacts in the refined regions due to
insufficient framebuffer precision during blending on the hardware used at this time?. The ray-casting
approach does not suffer from these artifacts since full 32bit floating point registers are used during
the accumulation in a fragment shader. At this time, the performance of the GPU volume raycasting
approach was only about 30% of the slice-based method. This performance penalty was mainly due
to the low performance of dynamic loops and branches in the fragment shaders of the GPU at this
time (NVIDIA NV40) and improved widely in later generations of hardware.

! Adaptive Mesh Refinement (AMR) is a popular technique in large scale CFD (Computational Fluid Dynamic) simu-
lations. AMR data is organized in hierarchical grids with resolution refined adaptively in regions of interest or where the
simulation requires it

These tests were made on an NVIDIA NV40 GPU supporting floating point blending only on 16bits

60

Image-order GPU volume-raycasting based approaches

The transition to volume ray-casting approaches together with the improved flexibility of the graphics
hardware (GPU) made possible the storage and the traversal of the hierarchical structure itself directly
on the GPU. This approach makes it possible to traverse the structure in parallel, removing the bottle-
necks that were previously created by the serial traversal on the CPU. Researches on such GPU based
acceleration structures are described in Section 2.4.2. This transition to a GPU based parallel traversal
of the acceleration structure constitutes an important step for GPU based volume rendering and that
is the approach we decided to follow.

As far as we know, the only methods for volume ray-casting preceeding our work and relying on an
acceleration structure stored and traversed on the GPU were proposed in [VSE06] for AMR data. In
this paper, two techniques relying on two different GPU based data structures are presented. The first
technique is based on the GPU implementation of octree textures [BD02] proposed by Lefebvre et
al. [LHNO5a]. The second relies on the flat "dynamic adaptive multi-resolution GPU data structure"
proposed by Lefohn et al. [LKS"06] and referred to as the "adaptive page table" structure. The octree-
based method uses a sparse octree structure and stores individual voxels in the leaves of the octree
texture, leading to a more difficult filtering scheme. The adaptive page table implementation relies
on a full (not sparse) mipmap hierarchy of page tables to index non-empty tiles of voxels stored in
texture memory, allowing hardware interpolation, but that tends to overrefine some parts of the scene.
The comparison between these two structures concluded that the octree approach is notably more
memory-efficient, but that the adaptive page table dramatically outperforms it in rendering speed, due
to its better access complexity and the support of hardware filtering. In their test, the adaptive page
table requires a three to four times larger memory for a 40 times increase in rendering performance.

Figure 2.21. An AMR grid used for CFD simulation with refinement around the surface geometry [VSEO6].

In our model, we will take the best of both approaches by combining an octree with tiles of regular
grids (bricks) traversed on the GPU for volume-raycasting. Bricks allow the voxel data to be stored
in a 3D texture. In this way, one can benefit from several hardware related advantages, like direct 3D
addressing, trilinear interpolation, and a 3D coherent texture cache mechanism. The multiresolution
structures presented previously are view-independent but do not provide continuous temporal tran-
sition between different subdivision levels. Therefore, discontinuities appear during the exploration
of such datasets, whereas our approach adapts resolution continuously. It provides a complete 3D
MIP-mapping scheme (with quadrilinear interpolation) with smooth temporal transitions to a differ-
ent subdivision levels.

61

2.5 Out-of-core data management

Multiresolution approaches allow only a subset of the whole dataset selected for a given point of view
to be present in memory for rendering. The reason why such rendering can still be efficient is that
the part of a scene needed for rendering is often much smaller than the entire dataset. However, this
subset can still represent a large amount of data in our context. Thus, transferring it entirely inside the
video memory at each frame would not allow us to achieve real-time performance.

In order to reuse data loaded inside video memory from frame-to-frame, some sort of caching must be
achieved. Cache systems can be used to turn temporal coherence to profit. Indeed, most data present
in memory for a given frame are still visible in the next frame, and new data progressively appear.
Taking advantage of this temporal coherence is the goal of our data management scheme (Sec. 7.3)
that is in charge of maximizing data reuse among frames, while loading newly required data and
evicting unused ones from memory.

In this section, we will first define some generic concepts relative to caching and virtual memory sys-
tems (Sec. 2.5.1). We will then describe previous works most related to our problem in the domain
of out-of-core scientific visualization (Sec. 2.5.3) and texture streaming for real-time applications
(Sec. 2.5.2).

2.5.1 Caching : Virtual memory based paging systems

When the size of the dataset that must be accessed is larger than the size of available memory, one way
to transparently provide access to this dataset is to rely on some form of virtual memory. The concept
of virtual memory has been used for a long time inside all modern operating systems [SGGO8]. The
purpose of virtual memory is to abstract the physical organization of the memory by giving the illu-
sion of a continuous memory address space, while allowing arbitrary physical allocation, potentially
into a complex hardware memory hierarchy (e.g. system memory, disk, network...). Virtual memory
provides the ability to transparently implement complex caching schemes, with data silently moved at
different levels of the physical memory hierarchy. A caching scheme makes it possible to temporary
keep data located inside a large slow memory (called the backing store) inside a limited amount of
fast memory so that it can be served faster for subsequent accesses.

Virtual memory works by adding a level of indirection between the physical memory and the address
space used by an application. Both physical and virtual address spaces are usually subdivided into
equally sized sets of memory called pages, that serve as an atomic unit for memory management. The
term cache is usually used to designate the hardware implementation inside a microprocessor of a
caching scheme with data cached inside small very fast memories embedded on the chip. The caching
scheme implemented inside operating systems for virtual memory (between system memory and disk)
is usually called paging mechanism.

In our context, we want to provide access from the GPU to a large dataset located in system memory
(or defined implicitly as we will see in Section 7.3) and cached inside the video memory. Our data
management scheme described in Chapter 7.3 implements a virtual memory paging mechanism with
demand paging.

As we will see in the next section, virtual memory systems with paging mechanisms have been used
for out-of-core scientific visualization since the beginnings of software-based single-threaded render-
ing on the CPU. In this section, we quickly introduce concepts linked to virtual memory and caching
mechanisms and used in the literature.

62

Caching and paging concepts

Page table A page table is used to track the mapping from virtual to physical memory pages (that
are generally equally sized). Like the page tables used in microprocessor’s caches, page table data
structures must efficiently map a block-contiguous, sparsely allocated large virtual address space onto
a limited amount of physical memory. When a client to the virtual memory system accesses memory
via a virtual address, the system first converts this address to a virtual page index. This virtual page
index is converted into a physical page address using the page table, and finally the offset of the re-
quested element into the virtual page is added to the physical page address in order to get its physical
address.

Demand-paging A page-fault (or cache miss) happens whenever a virtual page is accessed while
it is not physically present in the cache. In this case, the requested page must be loaded from the
higher size, lower bandwidth data storage (the backing store). Such behavior is called demand-paging
and allows data to be loaded only when needed, on-demand from the application. This leads to a
demand-driven loading scheme.

Replacement policy When a page needs to be loaded into the physical memory (from the higher
size, lower bandwidth memory backing store), another page already resident has to be selected for re-
placement (it is evicted from the cache). The policy by which a physical page is chosen to be recycled
is called the replacement policy. Standard page-replacement policies used inside operating systems
can be found in [Tan08]. The choice of an optimal replacement policy for a given application depends
on the kind of access pattern that will made on the cache. In our case, as for all ray-tracing applica-
tions, data access are mostly random access (with a 3D locality). In this case, the Least Recently Used
(LRU) page replacement policy is acknowledged as being the best general choice. With this policy,
the page that has been accessed the least recently is selected for replacement when a new page needs
to be loaded inside the cache.

Write back With traditional virtual memory systems, when a page is replaced inside the cache, the
data it contains must be saved into the larger backing store in order to preserve it for later use. In our
rendering application, such saving is not necessary since the data loaded inside the cache are read-
only and will not be modified during the rendering operation. Thus, our virtual memory and caching
system is read-only (cf. Chapter 7.3).

2.5.2 Texture streaming

In the context of real-time rendering for interactive applications, recent works have focused on us-
ing application managed GPU memory regions to store and update texture data depending on view-
dependent and visibility informations. Current graphics APIs provide a basic swap mechanism be-
tween CPU memory and video memory. Textures are treated as atomic resources: even if only a small
part of the texture is used, it is entirely loaded in video memory. Moreover only textures fitting in
GPU memory are handled. This swapping mechanism cannot be used in practice because it results in
poor rendering performance.

User-centric multi-scale streaming

The Clipmap architecture, presented by Tanner et al. [TMJ98], relies on a dynamic multiresolution
representation centered around the user to render very large textures for terrains. This representation

63

makes it possible to cache textures of arbitrarily large size in a finite amount of physical memory for
rendering at real-time rates. The idea is to keep in video memory only a view-dependent subset of the
MIP-map pyramid of full texture (cf. Figure 2.22). This subpart is stored as a stack of nested textures
of the same resolution, but covering increasing areas around the viewer. An incremental update is
done at each frame on this hierarchical texture representation in order to account for the movement
of the user by updating. In this approach, the management of the video memory texture storage is
trivial, since it is updated at the beginning of each frame with whatever texels are required for the
current frame, based on the movement of the user. However, the system targets datasets that even do
not fit inside the main system memory, and texture data must be streamed from disk. In case of fast
motions, this can lead to situations where the texture data required for a given frame are not present
in main memory. In order to ensure interactivity and not to limit the viewpoint speed, the method
relies on lower resolution data present in memory in order to render the frame while the loading from
disk is performed asynchronously. While this approach works well for texturing a single terrain with
simple topology, it does not fit well with the texturing of multiple complex objects. In addition, it
only accounts for LOD based on the distance to the viewer, but did not handle any sort of occlusion.
Thus, this kind of viewer-centric approach would not be usable in our context and would lead to a
huge amount of non-necessary data to get loaded.

Figure 2.22. Left: Clipmap concentric resolution bands centered on the position of the user. Right: Illustration
of the update process inside a clipmap using toroidal addressing. Source: [TMJ95]

Tile-based streaming

One approach to managing large textures is to subdivide the MIP-
map pyramid levels into regular grids [GY 98, CE98], defining tex-
ture tiles that will be loaded or cleared on demand. Usually a pri-
ority rule also determines in which order the tiles must be loaded.
The size of the tiles is chosen so that each tile can fit into GPU
memory. This organization of texture data is depicted in Fig-
ure 2.23. The main difficulty consists in detecting which parts of
the texture pyramid are needed for rendering from a given view-
point.

Figure 2.23. Illustration of a
tiled MIP-map pyramid representa-
tion with correspondence between
screen space (left) and texture space

Cline et al.[CE98] caches texture data in video memory by split- (1ight). Source: [LDNO/]

ting the MIP-mapping pyramid of a large texture into smaller textures (corresponding to the tiles). A
caching strategy is described to swap the small textures between main memory and GPU memory.
Needed parts of the texture are determined by a geometric computation on each polygon. Polygons
must be split according to the tiling of texture space for rendering and the discontinuities introduced by
the splitting make linear interpolation difficult, since different MIP-map levels are stored in separate
textures.

Lefebvre et al. [LDN04] proposed to use a tiled MIP-map pyramid to texture meshes and to manage
textures larger than the GPU memory. To do so, they perform a progressive loading of the tiles inside
a Tile Pool stored in video memory as a large 2D texture. Parts of the texture (the tiles) that are needed
for a given view-point are detected using a Texture Load Map (TLM). A TLM is a map of the texture

64

space containing visibility information for each tile. Its computation is based on conservative rasteri-
zation of the triangle geometry directly in texture space as illustrated in figure 2.24. Only front facing
triangles located inside the camera view frustum are rendered within the TLM, and occlusion culling
is handled using a shadow buffer like algorithm. The problem with this visibility approach is that it
requires the geometry to be rendered multiple times and with a costly fragment shader in order to fill
all MIP-map levels of the TLM. In addition, the TLM needs to be downloaded to the main memory
for processing by the Texture Cache, introducing important latencies.

Figure 2.24. The Texture Load Map component of [LDN04] computes the set of visible texture tiles, marked
in green, by conservatively rasterizing the geometry in texture space. Source: [LDNO4]

The management of the Tile Pool is handled by a Texture Cache running on the CPU and that im-
plements an LRU replacement policy of the tiles. When a non-loaded visible tile is detected in the
TLM, this Texture Cache forwards the tile request to a Texture Producer in charge of asynchronously
uploading the tile inside the texture memory. This cache does not scale well to very large texture data
due to the fixed tile decomposition done at each level of the MIP-map pyramid. For very large tex-
tures, the indirection grids used to reference the tiles and the TLM can become too large to be stored
in video memory. In addition, many communications and synchronizations have to be done between
the main memory and the video memory since the management of the cache is done on the CPU.

Direct tracking of data usage during rendering

In the context of the rendering of complex scenes stored on a distant server, Goss et al. [GY 98] pro-
posed to modify the graphics hardware of this time in order to track the usage of texture data directly
during the rasterization. This makes it possible to request only visible parts of texture and quickly
stream them to the client machine. This approach is based on tile-based decomposition of the textures
MIP-map hierarchy (cf. section 2.5.2). A counter is associated with each tile of a texture, and this
counter is automatically incremented whenever a fragment using the tile is written inside the frame-
buffer. It is decremented whenever another fragment using another texture tile passes the z-test and
overwrites the pixel value. This counter makes it possible to prioritize the dynamic loading based on
the number of pixels that need a given texture data. This approach requires a deep modification of the
texturing hardware while it is restricted to a very specific usage that is the rendering of opaque meshes
using a unique texture, that is a very unlikely scenario nowadays. It does not easily scale to very large
textures due to the fact that it requires scanning the list of tile counters in software in order to trigger
loadings (requiring the list to be entirely transfered to the system memory). In addition, the whole
texture pyramid is assumed to fit entirely into video memory, which is not possible when dealing with
very large textures.

As detailed in Chapter 7, we also propose a data management approach based on direct tracking of
data usage during rendering. In contrast to Goss et al. approach, our method runs directly on current
generation GPUs without the need for hardware modifications. We implemented it as a data-parallel
process using the compute mode of modern GPUs (Sec. 1.3.2). It does not require any CPU inter-
vention, is very flexible and can adapt to many rendering schemes. With our approach, each ray

65

used for rendering (either primary or secondary) directly emits data requests and provides data usage
information to a cache mechanism. This provides fine-grained visibility detection.

2.5.3 Out-of-core scientific visualization

The field of out-of-core methods, also referred to as "external memory algorithms" is large and ac-
tually dates back as far as 1950s. Out-of-core rendering of very large datasets has been a widely
studied topic for years in the domain of scientific visualization. It is still of high importance today,
for all cases where the entire model or scene does not fit into memory. A large portion of the paging
algorithms described in the literature are application-specific schemes designed to solve a particular
caching problem. In the following, we will discuss the approaches that are most recent and most
closely related to our work. A comprehensive survey of older out-of-core techniques for software
visualization can be found in [SjCC*02].

Early work for software rendering

In the area of software rendering for scientific visualization, early approaches like [CE97] suggested
using an application-managed cache mechanism in order to provide a virtual memory for rendering
data stored on disk. Such an approach is based on the idea that during the exploration of a large
scene, a visualization algorithm needs only to traverse a small subset of the entire scene at a given
time. Their system builds upon the operating system LRU (Least Recently Used) replacement pol-
icy. They demonstrate how application-controlled demand paging provides significantly better perfor-
mance than simple reliance on operating system virtual memory. They exploit on-demand loading of
pages (application-controlled demand paging) when they are used for rendering and show how using
fine-grained page size provides better overall performance. In addition, they suggest using a runtime
translation of the data loaded from disk in a packed format into an unpacked format in system mem-
ory optimized for rendering. We will see in Section 7.4 that our GPU-based data production pipeline
can exploit a similar optimization when transferring data between the system memory and the video
memory.

Distributed software ray-tracing

Many approaches exploit a PC cluster to render data sets that are too large to fit into the main memory
of a single PC. Such an approach is called distributed rendering. Wald et al. [WSBWO1] have demon-
strated the feasibility of interactive ray tracing of large triangle scenes on cluster-based systems. They
rely on a central data server to provide data to all the rendering nodes of the cluster. These data are
cached locally by the rendering nodes in order to limit costly data transfer through the network. This
cache is explicitly managed by the application. It relies on a decomposition of the BSP-tree storing
the scene into tiles (called voxels). These tiles are managed into a fixed-size geometry cache in local
system memory using a least recently used (LRU) strategy. They proposed to "suspend" rays that
would cause a page fault in the local cache and load the required data asynchronously over the net-
work while tracing other rays in the meantime. The stalled rays then get "resumed" once the data is
available. As we will see in Chapter 7.3, we rely on a similar approach in our GPU paging system.

66

Figure 2.25. Tllustration of the cached BSP-tree structure used in [WSBWO1]. Left: Local caching in cluser
nodes of sub-parts of the global BSP-tree grouped into tiles called voxels. Voxels are the smallest entity for
caching purposes. Right: Display of their high-level BSP tree by color coding geometry kept in each voxel.

In the domain of interactive ray tracing of iso-surfaces, DeMarle et al. [DPH 03] improves on Wald
et al. by eliminating the bottleneck implied by a central data server. This approach builds upon a co-
hesive program that is capable of accessing the aggregate cluster memory as a global memory space,
with all nodes serving some of the data to the rest of the nodes.

Single machine software ray-tracing

Wald et al. [WDS05] show how to efficiently ray-trace large-scale polygonal models on a single com-
modity desktop PC. They improve on [WSBWOI] by using a combination of automatic OS-based
memory management and demand loading in order to detect and avoid page faults due to access to
out-of-core memory. They show that a fully manually managed cache (as in [WSBWO1]), that man-
ages large sub-parts of the scene (stored into a BSP-tree) of several thousand triangles, leads to much
too coarse granularity to scale to very large scenes. In addition, reducing the managed page granularity
would have carried too much overhead to their mono-threaded cache management scheme. Instead,
they simply relied on the memory management of the operating system that provides transparent direct
addressing of data stored on disk, and demand loading memory on a per-page basis. The advantages
are a fine-grained paging using small pages as well as an automatic handling of race-conditions in the
case of multi-threaded access. Such an approach requires to pre-compute the whole data structure off-
line and to store it on disk in the exact same binary form as the one used for rendering. The problem
when relying on the OS paging mechanism is that data are automatically paged-in on demand upon
accessing it, and the resulting page fault stalls the rendering thread until the data are available.

In order to always maintain interactivity, they proposed to shortcut the automatic on-demand paging
of the system to allow loading to be performed in a separate loading thread without stalling the ren-
dering threads. Page fault are detected by the rendering threads before accessing data on a per-tile
granularity (with tiles grouping multiple pages) using a dedicated structure. When a page fault is
detected, the rendering thread triggers a fetching of a tile using a request queue. It then simply stops
its execution and relies on a simplified proxy representation to provide an approximated color to the
computed pixel. Proxies are lightfield-like pre-rendered approximations of the model, at several LOD
levels. They are kept in memory in order to always stay available. For complex models, the loading
from disk usually does not fit inside a single frame and has to be spread among multiple frames. Thus,
this approach ensures interactive rendering (3-7 fps at video resolution for the Boeing 777 dataset),
but it takes several seconds to get all data loaded to get a complete frame as illustrated in Figure 2.26.

67

Figure 2.26. Illustration of the quality approximation of [WDS05] during startup time on the Boeing 777
dataset. Top row: No proxy information, canceled rays displayed in red. Bottom row: Using geometry proxies.
Left: immediately after startup, lot of pixels used proxy. Right: after loading for a few seconds. Even then only
a fraction of the model has been loaded. Source: [WDS05]

GPU-based rasterization

The problem with the approaches presented previously is that the lack of multiresolution data forces
the algorithm to access large parts of the dataset to produce a single frame even for distant views.
Moreover, these methods rely on software ray-tracing implemented on a cluster, and do not exploit
GPU acceleration.

In the context of massive model visualization using standard graphics hardware, Gobbetti et al. [GM05]
proposed with their Far Voxels approach to use a level-of-detail (LOD) hierarchy based on an axis-
aligned BSP-tree * of the triangle data. They exploit an idea similar to Wald et al. [WDS05] proxy
geometries as a way to filter distant groups of triangles, with the surface representation kept for close-
up renderings. The leaves of the BSP-tree partition the original triangle mesh into chunks of a fixed
maximum number of triangles (around 5000), while inner nodes contain a view-dependent voxel rep-
resentation precomputed off-line. Voxels are generated from a discretization of the bounding box of
the node with a regular grid. Due to the nature of the BSP-tree, all nodes of the tree have different size
and so must be discretized with a different number of voxels. Non-empty voxels are stored as a list
of points linked by each inner-node of the tree. Rendering is done using a breadth-first front-to-back
traversal of the structure on the CPU, sending primitives to the GPU for rasterization. Triangles lo-
cated in the leaves of the tree are rasterized and inner node’s voxel data are rendered using a splatting
approach (cf. section 2.3.2). Frustum culling as well as LOD computation (to find the correct depth
based on the distance to the viewer) are computed on the CPU during the traversal of the structure.
Visibility culling of occluded nodes is performed using hardware occlusion queries (cf. section 2.4.3).

This approach stores the entire pre-computed data structure on disk and fully relies on the automatic
paging mechanism of the operating system to access it during rendering. An application managed
RAM buffer is used to keep the most recently rendered nodes inside system memory, but no detail is
given in the paper on the way it is managed. The storage of the rendering primitives (triangles and
splatted points) in the GPU’s video memory is done using an OpenGL’s Vertex Buffer Object (VBO).
This buffer keeps the last rendered primitives available in video memory using what seems to be a
simple FIFO replacement policy, but no special care is taken for efficient data reuse and transfers.

3Binary Space Partitioning

68

This approach suffers from many popping artifacts due to the lack of spatial interpolation of voxel
data, and from the lack of continuous transition between LOD levels and between voxel and triangle
representations. In addition, the pre-processing of such data is very time consuming.

Figure 2.27. . Source: [GMO5]

GPU-based volume ray-casting

Our approach was developed in parallel with the work of Gobbetti et al. [GMAGOS] that focuses on
scientific visualization applications (thus, do not follow the same goal). Similarly to us, Gobbetti et
al. proposed a multiresolution voxel data structure based on an octree combined with regular bricks
of voxels, as well as a full GPU-based traversal of this structure for rendering (cf. chapter 6). While
we share similarities with this work, our approach provides better rendering quality, more compact
storage, higher performance and more precise visibility detection as well as a more efficient data man-
agement. First, Gobbetti et al. do not provide a correct filtering of the multiresolution data since they
do not allow quadrilinear filtering (no smooth transition). Their octree data structure implementation
is less compact than ours (16 times) and thus provides less efficient storage and cache usage during
traversal. In addition, their visibility detection relies on occlusion queries which corresponds to the
first approach we tried and gave up due to its lack of efficiency in our context (Sec. 2.4.3).

Finally, their data management and caching scheme heavily relies on a serial processing on the CPU
with a cloned data structure in system memory. Our approach relies on a fast data-parallel scheme
implemented entirely on the GPU, removing all synchronization with the CPU and that does not re-
quire a cloned data structure in system memory. As in all previous approaches, their rendering scheme
requires the hierarchical structure to indicate the correct LOD for a given point-of-view, forcing an
update at each frame. In contrast, our scheme computes directly the required LOD level per-ray during
rendering, allowing a lazy update of the structure with only the newly required parts getting updated
at each frame.

Figure 2.28. Illustration of medical data rendered using the out-of-core volume ray-casting system presented
in [GMAGO8].

Part |

Contributions: core model

70

The GigaVoxels rendering pipeline

Figure 3.1. Examples of scenes composed respectively of 81923 and 20483 voxels rendered interactively using
our engine.

In this chapter, we present an overview of our voxel-based GPU rendering pipeline that makes the dis-
play of large and detailed volumetric objects and scenes very efficient. Voxels increase the amount of
displayable detail significantly beyond the limits of what can be achieved with polygons and support
transparency effects natively (which is a major issue in real-time rendering).

Our pipeline deals with the three main problems that appear when rendering voxel based represen-
tation on the GPU: the rendering problem, the storage problem and loading inside video memory. It
proposes a new compact data structure, as well as an efficient rendering algorithm and an out-of-core
streaming and data generation scheme, both designed as efficient data-parallel tasks entirely running
on the GPU. It is capable of rendering objects at a level of detail that matches the screen resolution
and interactively adapts to the current point of view. Invisible parts are never even considered for
contribution to the final image. As a result, our model obtains interactive to real-time performance
and demonstrates the use of extreme amounts of voxel data for interactive applications, which is ap-
plicable in many different contexts. With such an approach, we demonstrate in Chapter 6 that voxels
can achieve higher performance than triangle-based representations for very complex scenes.

72

3.1 Global scheme

Let’s start with a naive consideration. If the volume is small, GPUs allow an efficient rendering by
simply stepping through the dataset stored in a 3D texture as it is done by traditional volume ray-
casting approaches detailed in Section 2.3.2. In this way, one can benefit from several hardware
related advantages, like direct 3D addressing, trilinear interpolation, and a 3D coherent texture cache
mechanism (Sec. 1.3.4). For larger volumes, there are two problems: first, the algorithm would be
slow due to many steps that need to be taken in large datasets and, second, the whole dataset will not
fit into the GPU memory.

Previous out-of-core approaches for rendering massive amounts of data (cf Section 2.5.3) mainly fo-
cused on caching data located on disk into the main system memory. At the time they were written,
the limited amount of system memory and the limited bandwidth between disk and system memory
were the main bottlenecks in interactive application. Little care was taken about the caching of data
inside the video memory. Nowadays, massive amounts of data can be easily stored directly in sys-
tem memory, and the bottleneck is shifted to the limited amount of video memory and the limited
bandwidth with the large system memory (cf. Section 1.3).

By organizing the data in a spatial subdivision structure (Sec. 2.4.2) in video memory, empty or
constant parts of the volume can be left unsubdivided, which can already represent a significant com-
paction in our typical scenes (cf. Section 1.4.2). This also allows us to skip empty spaces during
ray-casting, speeding-up greatly the process. In addition, such structures allow a multiresolution ren-
dering scheme to be used (Sec. 2.4.4). Thus, rendering resolution can be adapted to the distance to
the viewer. Distant parts can be replaced by lower mipmap levels, leading to a lower resolution (a
different level-of-detail, LOD), thus lower GPU memory requirements. Since volume resolution, and
hence the size of stored voxels, is adapted to the distance to the observer, one can ensure that all vox-
els stored for a given point of view are sized to project approximately on the area of one pixel on the
screen.

Our goal is to provide a scheme that is able to scale to very large and detailed scenes. In this context,
the whole scene and all its scales can not be permanently kept inside the limited amount of available
video memory, even compacted inside a multiresolution spatial subdivision structure. One insight is
that, for a given point of view, the entire volume does not need to be in memory for rendering. Only
visible voxels need to be present, out-of-frustum as well as occluded data do not need to be loaded.
The subset of data required for a given point of view has to be determined using a visibility detection
algorithm (cf. section 2.4.3). Ideally, and thanks to the multiresolution scheme, only a few voxels per
pixel would need to be present in the video memory.

During the exploration of a scene, only newly visible voxel data need to be loaded inside the video
memory. Therefore, we developed an efficient streaming scheme able to dynamically load voxel data
inside the video memory. This scheme is entirely driven by demands emitted directly by the rendering
algorithm, and ensure the loading of the minimum amount of data needed for a given frame. Also,
visible data already present in memory must be kept loaded, while invisible ones can be replaced.
This loading requires an out-of-core loading scheme (cf. Section 2.5.3) as well as a caching scheme
(cf. Section 2.5.1) maximizing the reuse of data from frame-to-frame.

3.3.2 Overview | 73

3.2 Overview

We will now detail the different parts of our GigaVoxels GPU rendering pipeline depicted in Fig-
ure 3.2. Our model builds upon the hypothesis that the total amount of voxel data required for a
given point of view is less than the total amount of video memory. In such a case, only a few new
data need to be loaded in video memory at each frame, and data already loaded can be reused during
the exploration of a scene. If it is not the case, a caching scheme becomes ineffective and most of
the advantages of our system for real-time applications are lost. However, as we have seen in Sec-
tion 1.4.2, most of the scenes we are interested in are made of layers of voxel data that, even if they
are not opaque, quickly become opaque when accumulated. Thus, this ensures that for each pixel of
the screen, only a few semi-transparent voxels needs to be accumulated before a pixel becomes totally
opaque, blocking the view to subsequent data.

i Sparse Voxel
Producer el |
Structure
Final Image
. ,

%

%,
Triangle

Data

I)
CPU

Figure 3.2. Global view of the GigaVoxels rendering engine. Blue parts are stored data, green elements are
process related to the data management, the orange element is dedicated to the rendering, and pale blue elements
are examples of optional data sources.

~N

GPU Cache

Manager G P Uj

\,

Data structure

The data structure has two goals: first to provide a pre-filtered geometry representation allowing high-
quality alias-free rendering (cf. chapter 4), and second to provide a compact storage for a very large
amount of voxel data, with fast access for rendering.

Our pipeline is centered around a sparse multiresolution structure storing the voxel data. As detailed in
Section 2.4, previous data structures of this kind (designed to be traversed on the GPU) stored voxel
data directly in the tree, thus preventing the implementation of fast and accurate filtering. Instead,
we designed an octree-based GPU structure, which is convenient to represent and to traverse on the
GPU [LHNO5b, LHNO5a] and is well adapted to store regular data like voxels. It is combined with
small regular grids allowing fast hardware filtering, and easy data manipulation. We will detail this
structure as well as its efficient GPU implementation in Chapter 5.

74

Rendering

Our octree-based structure is used by a voxel rendering algorithm based on ray-tracing. This algo-
rithm directly traverses the data structure from front to back for each pixel of the screen, and ensures
that only the few visible voxels will be accessed for each pixel. It is detailed in chapter 6.

One of the main particularities of our rendering approach compared to previous works on multireso-
lution rendering (Sec. 2.4.4) is that it does not need the data structure to indicate the required level of
detail (LOD) for a given point of view. Instead, LOD is dynamically evaluated by each ray, allowing
the data structure to contain more data kept cached in video memory for future use, as well as arbitrary
ray directions, secondary rays (for shadows or reflection/refractions) and free spatial instancing of the
same data structure.

Caching and streaming

The data structure is stored in a video memory region managed as a cache by a Cache Manager, in
order to ensure data reuse during the exploration of a scene. This cache is based on a full LRU (Least
Recently Used) replacement policy (cf. Section 2.5.1) entirely implemented as a data parallel process
on the GPU. This cache manager implements a paging mechanism (cf. Section 2.5.1) that allows the
efficient loading of the missing data required for rendering, while recycling the oldest ones.

In contrast to previous approaches that relied on complex visibility detection algorithms (cf. sec-
tion 2.5.3) to determine newly required data and data used for rendering, our solution inherently
computes the visible parts of the scene during rendering. Our approach makes use of the ray-tracing
to directly emit data requests and usage information per ray. Since our ray-tracing approach ensures
an ordered traversal of the data, with only visible voxels actually touched, this provides us with fine-
grained on-demand loading.

We call this scheme ray-guided streaming. It allows us to transparently support many features that
were previously difficult or even impossible to support: loading data for arbitrary ray directions,
curved rays, arbitrary LOD (for instance allowing depth-of-field effects as presented in Section 8.3),
secondary rays (as exploited in our soft shadow application presented in Section 8.3), as well as free
spatial instancing of the same data structure (cf. Section 8.2). Such possibilities were not easily
allowed by previous approaches. Our whole cache management scheme is detailed in Chapter 7.

Voxel generation and loading in the GPU cache

One of the problems in using voxel representation as a natural rendering primitive is to generate these
voxel data and to efficiently transfer them inside the data structure in video memory. With previous
approaches, data were pre-computed and stored on disk to be loaded dynamically in system memory
and transfered in video memory from the CPU at runtime (cf. Section 2.5.3). In Section 7.5.3, we
show that such transfer initiated from the CPU is very slow when many elements need to be trans-
fered, due to high latencies between copy operations. It also requires a lot of communication and
synchronization between the CPU and the GPU.

Instead, with our approach, data stored in system memory are loaded in parallel directly from the
GPU, and written in video memory also in parallel from the GPU. We also allow data to be dynami-
cally generated on the GPU. Thus, this allows voxel data to be either precomputed in a pre-process and
kept available in system memory or generated on-the-fly during rendering (either fully procedurally
or from another representation, for instance a triangle mesh). This also allows compressed represen-
tations to be stored in system memory, loaded by the GPU and transformed on the fly into the voxel
representation needed for rendering, before being written in our data structure.

75

This task is managed by the last component of our pipeline: the GPU producer. 1t is a fully GPU
process in charge of loading data inside the data structure, on-demand from the cache manager (and
thus from the rendering). It is a user-defined component that can implement any voxel production or
loading scheme. We demonstrate direct loading of pre-computed voxel data from the system mem-
ory, voxelization from a triangle mesh, fully procedural generation as well as combinations of these
approaches. GPU producers are detailed in Chapter 7.

3.3 Technological choices

In order to develop this pipeline and implement it on the GPU, several technological choices had to be
made. One of the difficulties of this thesis has been the fast evolution of the GPU technology, while
many choices had do be done at the beginning of the thesis, 3-4 years ago. But these choices mainly
affected the implementation of our pipeline, while the fundamental design and the major technical
choices we made stayed valid, thanks to their strong fundamental justification.

Due to these technological changes, especially in the way of programming the GPU with the in-
troduction and evolution of CUDA and the compute mode presented section 1.3.2, 3 very different
prototype implementations of our pipeline have been developed during this thesis. Our final model
builds upon CUDA to implement the cache manager and the producers, while the rendering algorithm
is implemented both in CUDA and in OpenGL GLSL [Khr].

3.3.1 Preliminary GPU performance characterization

In order to make the relevant technical choices, one of the first tasks for this thesis has been to charac-
terize various performance behaviors of the GPU. Indeed, while graphics and compute APIs provide
a view of the features provided by graphics hardware, many details are still hidden to the program-
mer and particularly performance bottlenecks and fast paths are not always easy to determine and are
usually dependent on the GPU vendor and generation.

Thus, it is important to determine these hardware behaviors in order to make the right implementa-
tion choices. To do so, we relied on unitary tests of specific hardware features. Especially, we tested
the scheduling of fragment shader threads as presented in Appendix A.2 in order to speed up our
ray-casting algorithm. We also tested the behavior of texture caches depending on various texture
types as presented in Appendix A.1, in order to make a choice of texture storage for our data struc-
ture (Chap. 5). Some publications also provide precious insight on the performance of various GPU
features and instructions of the computing ISA (Instruction Set Architecture), like [WPSAMI10].

76 \ chapter 3. The GigaVoxels rendering pipeline

Volumetric geometry representation and
pre-integrated cone fracing

Figure 4.1. Left: Triangle mesh voxelized at 20483 resolution, amplified with procedural noise and rendered at
70FPS on a GTX280 with GigaVoxels. Right: Fully procedural sphere with a semi-transparent shell perturbed
with a procedural noise and rendered at 100FPS.

In this chapter, we first describe our volumetric geometry and material representation, as well as the
pre-integrated rendering model based on approximate cone-tracing that we propose in order to ensure
an accurate and alias-free rendering of pre-filtered multi-scale scenes.

As we have seen in Section 1.1.2, the idea of voxel based pre-filtering is to represent object geom-
etry using a density model stored inside a voxel MIP-map pyramid. As we will see in Section 4,
accurate geometry pre-filtering does not only imply simple density averaging, but also supposes a
pre-integration of the visibility in order to ensure a correct occlusion between filtered data.

We will demonstrate how we build our pre-filtered geometry model by starting from the integration
over a screen pixel footprint of the classical volume rendering integration formula along a single ray,
and we will detail how this double integration can be split and pre-computed in order to be stored
inside a MIP-map representation.

We will also describe how we transform a surface-based object representation into a volumetric rep-
resentation more easily filterable.

78

4.1 Overview

While classical B-rep surface definitions can not be linearly combined, we replace them by a statis-
tical distribution of densities stored as voxels into a regular subdivision of space, that can be linearly
pre-filtered inside a MIP-map pyramid, as explained in Section 1.1.2. In Section 4.6, we will see
how we transform a surface-based object representation into a volumetric representation more easily
filterable.

Most of the previous work on volume rendering (cf. Section 2.3) has been done in the context of sci-
entific visualization. These approaches usually render semi-transparent the participating medium. In
such a context, only a single scalar value is usually stored per voxel, and is transformed at runtime into
optical coefficients (colored light energy and opacity, using a transfer function) for volume integration
(cf. Section 2.3.1).

In our context, we want to store filtered material and geometry information at multiple scales, that
will allow a quick rendering of very-complex geometry, and to dynamically compute the light inter-
action at all scales during rendering. Typically, we want at least a filtered density (or an opacity based
on the density), a material color and a normal information per voxel. Storing and interpolating such
information poses particular problems that have not been handled previously.

In addition, the problem of pre-filtering solid geometry information at multiple resolutions inside a
volumetric representation has never been really posed in previous work. Multi-resolution approaches
(Sec. 2.4.4) concentrate on reducing the memory occupancy of volume representation, but do not fo-
cus on providing a correct pre-integration of the characteristics of the data at smaller scales. Usually, a
simple averaging of high resolution values is used. Such filtering is usually enough to render scientific
data, but does not account for self occlusions inside the filtered volumes.

As we will see in Section 4.2, accurate geometry pre-filtering also supposes a pre-integration of the
visibility in order to ensure a correct occlusion between filtered elements. Thus, exact pre-integrated
data that must be stored per-voxel depends on the model used for rendering. In order to get a com-
plete pre-integrated and pre-filtered voxel-based geometry model allowing a fast antialiased rendering,
three key elements will be defined in this chapter:

e A voxel-based volumetric geometry representation.
¢ A multiresoltion pre-integration of this geometry representation.

¢ A model for cone-tracing based on the multiresolution representation in order to provide a pre-
cise, alias-free rendering.

79

4.2 Pre-integrated cone tracing

Since first discussed by Crow [Cro77] in the middle of 1970s, aliasing has been a major problem in
rendering. One screen pixel is associated with more than just a line in space. It actually corresponds to
a cone because a pixel covers an area and not a single point on the screen (as illustrated in Figure 4.2).
This is typically the source of aliasing that arises when a single ray is used per-pixel to sample the
scene.

Figure 4.2. Illustration of the cone-shaped beam of light generated by the perspective projection and going to-
ward a given pixel. We approximate it using a single ray launched from the pixel and sampling a pre-integrated
representation of the scene geometry.

In order to integrate the incident radiance coming from a cone footprint, one needs to integrate the
incoming radiance /(D, w) coming from all w directions in the cone:

1= f I(D, w)dw .1

Q

Classical supersampling approaches (cf. Section 2.1.1) discretize this integral with multiple rays to
deal with aliasing, which lead to a very costly evaluation. Other approaches like cone or beam tracing
(Sec. 2.1.1) provide faster antialiasing, but rely on an analytical definition of the geometry and can not
be applied in a general case. Instead, we propose a model that is based on a single ray per pixel, and
deals with the aliasing by relying on a pre-filtered geometry representation stored inside a MIP-map
pyramid.

This approximated cone tracing is done under the assumption that we can approximate the integration
over a cone of visibilities, with the integration along a single ray of pre-integrated spatial visibilities.
We base our model upon the classical volume rendering integration model explained in Section 2.3.1.
It describes the integration of both the visibility and the reflected energy along a ray inside a partici-
pating medium.

In the next section, we will describe step by step how we build this pre-integrated rendering model,
together with assumptions we make on the rendered data in order to allow it.

80

4.2.1 Volume pre-integration theory
Volume density model

The physical model of light transport into a participating medium that is used by the classical volume
rendering integration scheme has been described in Section 2.3.1. In this model, the medium is de-
scribed using two main optical coefficients: the total absorption (also called extinction) y = « + o,
the sum of the true absorption coefficient « and the out-scattering coefficient o-; and the total emission
n = g + j, the sum of the true emission coefficient g and the in-scattering coeflicient j.

In our model, we consider the total absorption coefficient y(s, r) on a point s along a ray r. The par-
ticipating medium represents a filtered geometry that rarely emits light on its own, but instead more
often scatters (in the view direction) some energy coming from an external light source. Thus, we do
not consider the true emission coefficient g. Instead, we consider the in-scattering coefficient j(s, r)
that corresponds to the energy reflected (scattered) by our filtered surface and material model on a
point s along a ray r in the direction of the eye.

As we will see in Section 4.5, our geometry pre-filtering model will not directly store the scattering
energy j, but instead the material properties allowing us to compute it dynamically at render time
(based on any lighting model, local or global). However, we will first build our model based on y
and j themselves, and we will explain later (in Section 4.5) how the lighting computation can be
factored-out of the pre-integration.

Toward a volume pre-integration model

In this explanation, we first assume a parallel projection leading to orthographic beams generated by
pixel footprints, we will see later how to extend this model to perspective projection with cone-shaped
beams. We build upon the notations introduced in Section 2.3.1.

Our goal is to build a pre-integration model for the computation of the average energy /(D, P) accu-
mulated over the footprint of a pixel P on the screen. This can be modelized as the integration of
the volume rendering integral (Sec. 2.3.1, equation 2.11) along a ray r over the footprint of the pixel
P as described by equation 4.2 and illustrated in Figure 4.3. In order to keep equations simples, we
first discuss this model within the parametrization of orthographically aligned rays emitted by a given
pixel. We will see later how to transform our results expressed in this ray-based parametrization in
order to get a world-space parametrization that allows a static storage of pre-integrated values inside
our voxel MIP-map pyramid.

D
I(D,P) = f f (s, e K xendigg g, 4.2)

reP so

*\)\]r/@

Figure 4.3. Integration over a pixel footprint of the volume rendering integration along orthographic rays.

What we propose is to replace the integration over a pixel of the ray-based volume rendering integra-
tion function, by a pre-integration inside a set of cubical volumes of this function in object space as

4.4.2 Pre-integrated cone fracing | 81

illustrated in Figure 4.4. Our goal it to store a discrete set of these pre-integrated volumes per-voxel
inside a 3D MIP-map pyramid, in order to use them for fast rendering.

SO \"A Si V;.Pre-integrated volumes D

Figure 4.4. Accumulation for a pixel of the pre-computation inside sub-volumes of the volume integration.

Step-by-step pre-integration

We will describe step by step how we reach this goal and what are the approximations and hypothesis
we make on the data in order to allow it.

First, we need to split the volume integration along a single ray into a discrete number of sub-
integrations that can be precomputed. In order to simplify the equations, we denote 7(s1, s2,r) the
optical depth that corresponds to a local path integration of the total extinction between s1 and s2

along a ray r:
52

7(s1,52,r) = f)((t, r)dt 4.3)

s1
And we denote Q(s1, s2, r) the local path integration of the in-scattering energy:

52

O(sl,s2,r) = f (s, e TS 20 g (4.4)

sl

Based on these notations, we split the integration along rays on the interval [sg, D] into a discrete
number of local sub-paths [s;, s;+1], for both the energy integration part and the sub-integration of the
attenuation:

n
(D, P) = f > (s sivr.r) - € Emt) g 4.5)

reP =0

These discrete summations correspond to the marching process done along rays in classical ray-
casting rendering approaches presented in Section 2.3.2.

Our final goal is to bring the integration over a pixel P inside the two discrete summations, in order
to apply it directly to the sub-paths integration of both Q and 7. Once applied to these sub-paths, that
will allows us to pre-compute them and to store them inside our hierarchical voxel representation.

For the first step, we rely on the Fubini’s theorem. Based on the continuity of all functions (all param-
eters are defined continuously in space), we can swap the discrete sum and the integral over the whole
expression:

n
ID,P) =) f O(si i1, 7) - € Hieint TORH10) gy (4.6)
i=0

=0 \ cp

82

We will now use a general hypothesis on our data the impact of which will be detailed in greater
depth in Section 4.4. This hypothesis is that, on a given ray r, a sub-path integration of energy
OC(si, sis1, 7) is decorrelated from e~ 2=+ "S5+ the integration of the total absorption happening
on the whole path between s;;1 and the position of the eye. This means that these two values do not
have a statistical dependence. Within this hypothesis, thanks to the definition of the statistical corre-
lation correlation(a(), b()) = f a(Ob() — f a() f b(), we can replace the integral of the product of the
two decorrelated terms by the product of their integral, as expressed in equation 4.7

This hypothesis is linked to a more global hypothesis we make on the distribution of densities in our
scene (cf. Section 4.4). The in-scattered energy j and the total absorption y are linked together on a
given point in space through our volume density model (Sec. 4.2.1), both being multiplied by the den-
sity coefficient p. Thus, the correlation between values along a given ray could come either from the
distribution of density, or from the distribution of the initial absorption or in-scattered energy values.
We will detail in section 4.4 in which cases this correlation can appear. However in a general case, we
consider the decorrelation hypothesis as acceptable.

n
ID,Py~ Y f OCsi, Siv1, 1)dr |- f e” Zieint TCrS10) g 4.7)

i=0 <P €P
Thanks to this hypothesis, we already obtain a formulation of the in-scattered energy in the form we

were looking for, pre-integrated over a pixel P between the parameters sl and s2: Q(sl,s2, P) =
[op Qs1, 52, r)dr.

We now need to get a similar expression for the pre-integration of the optical depth. To do so, we
need to bring the integration over P inside the inner sum of optical depths computed in the exponen-
tial. Instead of trying to pull the integration over P up in the exponential, we pull down the sum from
the exponential into a product of exponentials:

n

n
I(D,P)zz f OCsi Siv1, rdr | - f]—[e TS gy (4.8)
i=0

=0 \\ep ep J=iFl

In fact, this formulation as a product of exponentials corresponds exactly to the way transparency
T(sl,s2,r) = e 71527 g classically computed with a discrete integration on a given path along a ray
(cf. section 2.3.1). Thus, we chose to pre-integrate transparency instead of the optical depth itself.
With this formulation, the only operation remaining in order to get a formulation of the pre-integrated
transparency is to swap the integral over P and the product operator.

Once again, we rely on a correlation hypothesis. This time, the correlation hypothesis is a bit more
restrictive, since we need all successive optical depths T'; = e "G5+ to be decorrelated. This means
that along a given ray, successive optical depths (pre-computed along sub-paths) do not have a statis-
tical dependence. This hypothesis implies that initial densities (coming from the geometrical model)
should be distributed as randomly as possible inside a beam, on large distances'. We will see in Sec-
tion 4.4 that this is usually relatively true in the scenes we are interested in, and that violating this
hypothesis only has a limited impact on the rendering quality.

By definition of the correlation, correlation(a(),b()) =0 = [a(Ob() = [a() [b(). Thus, thanks to
our non-correlation hypothesis, one can swap the integral over P and the product operator :

! However for short distances, correlation would be handled correctly since the integration would be pre-computed
correctly inside the pre-integrated sub-paths

83

I(D,P) ~ Z[fQ(si, s,~+1,r)dr]~ l_[fe_T(S-/’S-"“’r)dr]] 4.9)
i=0 P

=0 \\Zp j=itl

We now get the two functions we want to pre-compute and store in our pre-integrated voxel represen-
tation, the average in-scattered energy Q and average transparency 7

0O(sl,s2,P) = f O(s1, s2, r)dr (4.10)
reP

T(sl,s2,P) = f e T6LI2N g 4.11)
reP

That leads us to the following render-time integration scheme that will be implemented by the render-
ing algorithm presented in Chapter 6:

n

ID,P) ~ Z[(é(si, sivt, P)) - | | (TG, sj+1,P))] (4.12)

i=0 Jj=i+l

4.2.2 Discrete composition scheme

Thanks to the model we just presented, and based on equation 4.12, it is possible to evaluate the
radiative light (D, P) coming from a beam, towards a pixel P, by sampling along a single ray.

To do so, we define a composition scheme that can be used to incrementally compute I(D, P). For
a pixel P, we define Q = @(s,-, si+1,P) and T, = T(Si, si+1, P), as well as accumulated energy I; at
position i and transparency 7;. This leads to the following front to back compositing scheme, with the
final I(D, P) = Iy :

I = I +T110; (4.13)
[; = TiTi (4.14)
with the initialization:
, = 0, (4.15)
[, = T, (4.16)

4.2.3 World-space definition

Based on the model we just described that is expressed in ray-space, we want to pre-compute the two
functions Q and T in world-space, so that they can be stored per-voxel in our MIP-map representa-
tion. Thus, we redefine these two functions depending on a position p, a direction d, a surface area of
integration s and a length of integration /:

@(p,d,s,l)z f (s, s + [, r)dr “4.17
re(s,p.d)

84

T(p,d,s,) = f e TSN gy (4.18)

re(s,p,d)

We will see in the next section how we discretize and store these 8D functions inside our voxel MIP-
map pyramid.

4.3 MIP-map pre-integration model

Our goal is to discretize our pre-integrated energy function

é(p, d, s,]) and pre-integrated transparency function T(p, d,s,l)

for non-overlapping cubical volumes stored in a set of regular voxel T
grids of decreasing resolutions organized as a 3D MIP-map pyra-

mid (Fig. right). Thus, we want to pre-compute these functions T
for a discrete set of positions p regularly distributed in space, and a
set of length of integration / corresponding to the size of the voxel,
and thus determining the level in the pyramid. As we want to main-
tain cubical voxels, we link this length of integration / to the sur-
face area parameter s that we pre-compute for square areas s = 2. Mipmap pyramid of pre-

Thus, the pre-computation over large pixel integration footprints integrated values

leads to long pre-integrated lengths, but this allows a storage inside cubical voxels and provides a
multiresolution scheme.

sa|dwps pajpjodiaqul
Alapauljlaponp

The pre-integrated transparency T stored per-voxel in our volumetric representation corresponds to
the transparency of the volume when seen through a section that has the same size is the voxel it is
stored in. Similarly, the pre-integrated in-scattered energy Q corresponds to the energy added along a
ray by the filtered materials represented inside a voxel. We will see that in practice, we do not want
to pre-integrate and store Q directly per voxel, but instead we want to store the shading parameters
allowing to dynamically compute Q at render time (Sec. 4.5).

With this representation, the only parameter remaining per voxel to fully represent Q(p, d, s, /) and
T(p,d, s, 1) is the direction of integration d. We propose two models for its representation: a sim-
ple anisotropic model storing an omnidirectional approximation of these two pre-integrated functions
(Sec. 4.6.3), as well as a more precise model storing a few discretized directions of integration that
are interpolated during rendering (Sec. 4.6.4).

" P

V;.Pre-integrated volumes
Figure 4.5. Accumulation along a single ray launched for given pixel of the pre-integrated sub-volumes stored
inside the MIP-map pyramid.

4.3.1 Quadrilinear interpolation

At render time, one ray is launched per pixel of the screen. Values are sampled along this ray inside
the MIP-map pyramid, at a level-of-detail (LOD) chosen in order to get a pre-integrated surface s
corresponding to the pixel size. Values for continuous volume positions p and continuous footprint

85

areas s (and thus continuous length of integration /, since s and [are linked) are reconstructed by in-
terpolation of the values stored inside the MIP-map pyramid. As we will detail in Section 5, we want
to rely on the GPU texture filtering hardware for this computation (cf. Section 1.3.4), which limits our
reconstruction filter to a quadrilinear interpolation. However, relying on a quadrilinear reconstruction
filter supposes that the sampled values can be reconstructed linearly.

We first discuss the interpolation inside a given MIP-map level in order to reconstruct values at con-
tinuous positions. If we consider a single ray, the pre-integrated transparency T does evolve bilinearly
on the plane orthogonal to the ray (parallel to the screen), and thus can be bilinearly interpolated on
this plane. Indeed, it is on this plane that the linear integration (pixel footprint averaging) of the pre-
integrated sub-paths is done. However, this pre-integrated transparency T does not evolve linearly in
the direction of the ray. In this direction, the transparency evolves exponentially due to the volume
rendering integration, and thus can not be linearly interpolated. The same linear interpolability issue
applies to the in-scattered energy Q that can be linearly interpolated orthogonally to a ray, but do not
in the direction of the ray due to the visibility integration in this direction. Since we don’t want to use
a totally custom interpolation scheme (to benefit from the hardware trilinear texture interpolation),
we rely on a linear interpolation in all axes. In practice, the impact on the rendering precision of this
approximation appeared to be negligible in most cases.

The remaining interpolation is the one that needs to be done between two MIP-map levels, in order
to reconstuct a continuous surface of integration s (since LOD footprints are quantified), and linked
length of integration /. Transparency evolves exponentially with the length of integration /. Thus,
since both Q and T contain a transparency value, these values do not evolve linearly between two
MIP-map levels. However, we chose to interpolate them linearly, once again for efficiency reasons,
and given the low impact on rendering quality in most cases.

4.3.2 Cone-shaped beams

As presented so far, our pre-integration model only allows the evaluation of the volume rendering in-
tegral inside orthographic beams generated by a parallel projection. We will now explain how we rely
on the MIP-map pyramid representation detailed in the previous section and storing our pre-integrated
energy and visibility functions to approximate cone-shaped beams generated by perspective projec-
tion.

Raycone __»
footprint

Quadrilinearly
interpolated samples >

Sparse mipmap pyramid of pre-
Voxel-based cone integrated values (Octree)

Figure 4.6. Illustration of one ray sampling using quadrilinear interpolation in the voxel mipmap pyramid.

In practice, for anti-aliasing, we rely on very thin cones (generated for each pixel) that can be con-
sidered as locally cylindrical. We approximate cone-shaped beams by simply varying the LOD used
in the MIP-map pyramid when sampling along a ray. The idea is, for each sample, to use the LOD
providing the surface of integration s approximating the section of the cone at the point where the

86

sample is taken. This scheme is illustrated in Figure 4.7. As we have seen in the previous section,
interpolation must be used between the values stored for discrete area s in the levels of the MIP-map
pyramid, in order to get the exact area required for each sample.

Ep———

V;, Pre-integrated volumes

Figure 4.7. Illustration of a cone shaped beam approximated using our voxel-based cubical pre-integration. It
is computed efficiently using only a few samples taken along a single ray.

As illustrated in Figure 4.7, the local projection inside pre-integrated sub-volumes corresponds to an
orthographic projection, and not a perspective projection as would be expected. This simplification
leads to a parallax not taken into account locally in each beam part. This error increases as the size
of the pre-integrated volumes increases. In our typical case using thin cones for antialiasing, the
small parallax error that can appears inside sub-volumes integrations can be considered as negligible.
However, this error increases as much as the aperture of the cones increases.

Cone footprints

The second approximation we make with our approach is to approximate the cone footprint, with cu-
bically shaped sub-volumes aligned with the main axis of our MIP-map representation, as illustrated
in Figure 4.7. The first thing to note is that we consider the cone footprint because we represent pixels
as disks-shaped elements in order to simplify the representation.

Since values read in the MIP-map pyramid are interpolated both spatially and in resolution between
MIP-map levels, the exact footprint of a cone inside the voxel representation is not trivial to estimate.
In order to get an idea of this footprint, we display in Figure 4.8 the relative accumulated weight
of each voxel (splatted inside the maximum resolution of the MIP-map pyramid) in the quadrilinear
interpolation that is done each time they are accessed. Figure 4.8(a) presents these weights inside a
volume rendered in 3D for a cone aperture of 11.25°, and Figure 4.8(b) for an aperture of 22.5°. The
same experiment is presented for a 2D cut inside a volume in Figure 4.8(c). Even if the footprint
of a single cone appears blocky, it in fact approximates a Gaussian distribution centered around the
sampling ray. Thus, this approximation converges on a good quality sampling when multiple beams
are sent from neighboring pixels. Indeed, sampling a volume with such cones in fact globally ensures
energy-conservation. This is illustrated in Figure 4.8(d) that presents the same experiment for a set of
rays launched on an entire line of pixels. One can observe that voxels appear regularly sampled, with
a weight depending only on their distance to the screen (as expected).

(@) (b) (c) (d)
Figure 4.8. Display of the footprint of pre-integrated voxel cones, in 3D inside a volume (a, b) and inside a
single slice of a volume for a single ray (c) and for a set of rays launched on a whole line of pixels (d).

4.4.4 The decorrelation hypothesis | 87

4.4 The decorrelation hypothesis

When we defined our pre-integrated cone-tracing model in Section 4.2.1, we relied on two decorre-
lation hypotheses. These hypotheses on the definition of the scenes we can render accurately define
the limits of our model. However, we will see in this section that these hypothesis do not represent a
strong restriction on the data we can represent, and that the impact of violating these hypothesis on
the rendering quality is very limited in typical scenes.

Correlation-aware filtering is still an open problem that goes beyond the scope of this work and was
not handled in this thesis. It is the topic of another thesis currently in progress.

4.4.1 Decorrelation of densities along a beam

As we have seen in Section 4.2.1, we base the definition of both the in-scattered energy ¢ and the total
absorption coefficient y upon a volume density distribution model. The two decorrelation hypotheses
are in fact related to a more general hypothesis on this distribution of densities in our scene.

To ensure the two decorrelation hypotheses, it is enough to ensure that inside a given beam gener-
ated from a screen pixel, densities coming from the geometrical model are randomly distributed on
medium-scale distances (larger than the pre-integrated sub-paths)>. With this hypothesis, it is possi-
ble to ensure that the energy Q in-scattered in a ray by a given pre-integrated sub-path is decorrelated
from the total absorption happening from this sub-path back to the eye (first decorrelation hypothesis
used for equation 4.7). It also ensures that successive pre-integrated transparencies 7 along a ray are
decorrelated (second decorrelation hypothesis used for equation 4.9)

4.4.2 Impact of the correlation

This constraint on the distribution of densities inside ray-beams means that in order to produce an
accurate rendering, initial densities coming from the geometrical model should be distributed as ran-
domly as possible when seen through a beam. For instance, this hypothesis is violated when ob-
serving long alignments of similar densities (partial occupancy), like a wall seen from the edge (as
illustrated in Figure 4.10c). However, correlation of densities is correctly handled locally within
the pre-integrated volumes, so problems appear only for large-scale correlations, when multiple pre-
filtered volumes are correlated along a ray. Such a large scale correlation is less likely to happen than
local correlations.

Voxels

Screen
Screen

(b) (0)

Figure 4.9. Illustration of the result on the screen of volume integration with a lateral per-voxel linear inter-
polation, with one opaque voxel (a) two correlated opaque voxels (b) and three correlated opaque voxels (c).
Correlated cases lead to a non-linear integrated lateral opacity (depicted as a red curve on screens) that diverges
from the expected linear result, since (b) and (c) screen results should be the same than (a).

Large scale density correlations lead to an over-estimation of the integrated occlusion (¢ = 1 — T)
due to the violation of the second decorrelation hypothesis. This situation is illustrated in Figure 4.9

2Shortscale correlations can be accounted in the pre-integration

88

for a simple exaggerated case. An alignment of linear gradients of opacity in voxel space seen from
the edge should result in the same gradient in screen space if integrated correctly. However with
our model, such an alignment would result in an exponential gradient in screen space, leading to an
over-estimation of the opacity. This error tends to make filtered objects appear a little bit larger in
screen-space than they should be. However, since we use thin cones to approximate the energy com-
ing through pixels of the screen, in the worst case the maximum error that can occur due to correlated
situation is no more than the width of one pixel on the screen, which is nearly unnoticeable. The prob-
lem becomes worse when the aperture of the cones is increased (for instance when approximating a
depth-of-field effect as detailed in Section 8.3).

On the other side, the violation of the first decorrelation hypothesis (equation 4.7) would result in oc-
cluded energy to be considered. This problem is potentially compensated partly by the over-estimation
of the opacity. This can lead to the integration in the final color of a pixel of color contributions com-
ing from occluded materials. But once again, since we rely on thin cones, this error is practically
imperceptible in most cases.

4.4.3 Typical cases

In addition to the limited impact of correlation on the rendering precision when using thin cones, this
problem of correlation appears only in specific situations that are not very common. Three typical
rendering situations (corresponding to the typical scenes we are interested in, cf. section 1.4.2) are
depicted in Figure 4.10. In situation (a), short density alignment are encountered, leading to very
small rendering errors. In situation (b), rays traverse only a single pre-integrated voxel, leading to
zero integration error. Situation (c) is the only situation where important errors can be observed: de-
spite traversing many partly occupied voxels (@ = (1 —T) = 0.5), the final total opacity of the selected
pixel should be a = 0.5, but we overestimate it.

Voxels A

T [

y

[]
1 1
ovaned| | I NEERN HEEEE

—L -4 =L d_ 15

Expected -.. ..-..-

Screenpixels Screenpixels

Screenpixels

(@) (b) (©
Figure 4.10. Illustration of three typical rendering situations with the comparison between obtained and ex-
pected screen-space results for a cylindrical beam launched for each pixel.

4.5 Pre-filtering shading parameters : toward a multiresolution re-
flectance model

The model as described thus far assumed that the reflected energy j was entirely known before render-
ing, and we stored its pre-integrated value Q in the pre-computed MIP-map representation. In order to
allow fully dynamic lighting computation, we will now explain how it is possible to factor the lighting
computation out of the pre-integration of j inside Q, and to pre-integrate only material parameters.

89

View cone

T N

Figure 4.11. Illustration of our local shading model based on pre-filtered surface and material parameters.

Each voxel at a given LOD of the pre-integrated MIP-map pyramid must represent the light behavior
of the lower levels - and thus, of the whole scene span it represents. As we have seen in Section 2.1.2,
texture pre-filtering techniques rely on the fact that, under some linearity assumptions, it is possible
to factor-out from the shading integration some shading parameters and to pre-filter them separately
in order to produce antialiased rendering. This operation is possible only when the shading parame-
ters that are factored-out have a linear relationship to the final color, meaning they are involved only
linearly in the shading function.

4.5.1 Material parameters

Many different lighting models and material parameters can be used. In this section, we will only
describe the parameters used to compute a simple local shading model, assuming single scattering.
This is the model we used for most of the examples presented in this thesis. A more complex model
allowing indirect lighting will be described in Chapter 9. This simple model is based on a single
vector of material colors Crgp, a surface normal N and a global analytical BRDF (Phong). Since the
material color has a linear relationship to the final color in the shading computation, it can be freely
factored-out and pre-integrated separately. We store a vector of pre-integrated color values Crgp for
each voxel of our representation and filter it during the MIP-map construction described in Section 4.6.
Things are more difficult concerning the normals, as we have seen in previous work (Sec. 2.1.2), a
simple vector-based normal description can not be linearly filtered. Thus, we rely on a normal dis-
tribution function stored per-voxel and representing the filtered distribution of surface normals in a
given volume. The simple normal distribution model we chose to use is described in Section 4.5.2.

More precise material definitions and varying BRDFs models could be used, but this was not the focus
of our work.

4.5.2 Simple normal distribution function

While the material color can be freely pre-integrated, it is not the case for the surface normal infor-
mation N that is needed to compute a local shading model. As we have seen in Section 2.1.2, filtering
normal map representations has been a long studied problem. Normal map filtering approaches are
based on the idea of representing the normal information using a statistical distribution of normal
directions over a surface (called normal distribution function, NDF), that can be linearly filtered. Ac-
curate NDF representations (based on spherical harmonics for instance) have been proposed in the
past [Fou92b, HSRGO7, BN11]. While such representations are totally allowed by our model and are
required for a high degree of filtering (when many objects are aggregated), we considered them too
memory-intensive for moderate filtering. Instead in our examples, we choose to store only isotropic
Gaussian lobes characterized by an average vector D and a standard deviation o as proposed by

90

Toksvig [TokO5]. In order to ease the pre-filtering (computation of the MIP-map pyramid) and inter-
polation, the variance is encoded via the norm |D| such that o> = %. This representation supposes
an anisotropic sub-geometry distribution, a moderate filtering and a single filtered face per-voxel.

4.5.3 Local shading model

At render time, the actual pre-integrated in-scattered energy Q is computed for each sample taken
inside the voxel representation. This computation is done by applying a local shading model (in our
examples a simple Phong), based on the vector of material colors ERG B, the filtered normal distribution
(NDF) N and the directions to the eye, and to the point light source.

For this, we have to account for the variations in the embedded directions and scalar attributes. For
relatively large cone apertures, the span of the cone that is currently accumulating the current voxel
must also be taken into account as illustrated in Figure 4.12. As shown in [Fou92b, HSRGO7], this
can conveniently be translated into convolutions, provided that the elements are decomposed into lobe
shapes. In our case, we have to convolve the NDF, the BRDF and the span of the view cone, the first
already being represented as Gaussian lobes (cf. previous Section).

We consider the Phong BRDF, i.e., a large diffuse lobe and a specular lobe which can be expressed
as Gaussian lobes. Nonetheless, our lighting scheme could be easily extended to any lobe-mixture
BRDE. As previously discussed, the NDF can be computed from the length of the averaged normal

vector |N| that is stored in the voxels, via the approach proposed by [Tok05] (o2 = %).

We fit a distribution to the view cone, by observing (Fig. 4.12), that the distribution of directions going
from a filtered voxel towards the origin of a view cone is the same as the distribution of directions from
the origin of the cone towards the considered voxel. We represent this distribution with a Gaussian
lobe of standard deviation o, = cos(i), where s is the view cone’s aperture.

Figure 4.12. Illustration of the direction distribution computed on a filtered surface volume from an incident
cone.

91

4.6 Practical implementation of the model

4.6.1 Initial voxelization of surface geometry

B-rep representation is the standard representation of shapes in computer graphics. Although if our
model supports any input representation, an important element to determine is how a B-rep geome-
try is transformed into a volume density representation. Generally, we represent watertight (closed)
geometry with a solid voxelization (filling inside objects volume). Non-watertight geometry (like the
leaves of a tree) can also be voxelized simply with a surface voxelization, with each intersected voxel
assigned an arbitrary density (usually full).

Our goal is to obtain an average material color Crgp, a normal distribution N and a transparency 7 for
the maximum resolution level of our MIP-map multiresolution representation. Then, we will be able
to filter and pre-integrate these parameters inside the inner levels of the MIP-map pyramid (cf. next
sections). This voxelization is ensured by our GPU producer model presented in Section 7.4.

For each voxel at maximum resolution, a total density p is computed by approximating the union
of the volume of the intersection of all objects (in case of watertight geometry) with this voxel. An
average absorption coeflicient «” is also estimated simply based on the transparency of all intersecting
objects. Taking «” into account during the voxelization makes it possible to represent and filter semi-
transparent objects. Following the density model presented in Section 4.2.1, both «” and p are used to
compute a weighted absorption x = «’p. It is used to compute an average transparency T = ¢ **x for
the voxel, with A, the size of a voxel. On the other hand, an average vector of material colors Cggp is
computed by averaging the vectors of material colors of every intersecting geometry, scaled by their
ratio of density relative to the total density p of the voxel. Similarly, we also compute a normal dis-
tribution N combining the average normal (in the voxel) of all intersecting geometry scaled by their
ratio of density.

In practice, we store Cggp and T as an RGBA value, with the opacity component @« = 1 — T. The
RGB color component is an opacity weighted color RGB = aCrgp in order to provide a correct linear
interpolation that does not suffer from bleeding of transparent colors. Following the simple model
described in Section 4.5.2, the normal distribution N is stored as a simple 3D vector Ny,.. It is also
pre-multiplied by « for a better interpolation.

4.6.2 Isotropic and anisotropic voxel representations

In the MIP-map model for pre-integrated cone tracing presented in Section 4.3, the discretization of
the parameter d defining the direction of pre-integration inside a given voxel was not defined. We
propose two practical implementations for the discretization of this parameter. The first implementa-
tion neglect this direction parameter and considers isotropic per-voxel values. The second proposes a
simple approximation of anisotropic per-voxel values based on a discretization along the six principal
directions.

4.6.3 Compact isotropic voxels

The advantage of the isotropic voxel representation is its compactness, since only one value needs to
be stored for each parameter maintained per-voxel. This is the implementation we use for nearly all
examples shown in this thesis, apart in Chapter 9.

This representation is a rough approximation of our theoretical pre-integration model. The MIP-map
pyramid is built from top to bottom, starting from the highest resolution. Instead of pre-computing
the actual volume integration model for the parameters T, Crgp and N (the normal distribution), we

92

neglect the visibility inside pre-integrated volumes. Thus, we simply apply a traditional MIP-mapping
scheme. In order to compute a lower resolution voxel from the immediately higher resolution ones,
we simply average the parameters (presented in the previous section) of the 8 higher resolution voxels.

In practice, this implementation works pretty well for antialiasing of primary rendering rays that are
relatively thin. However, it becomes insufficient when large cones are required. This is the case for the
depth-of-field model presented in Section 8.3.2, or the indirect lighting model presented in Section 9.

Rendering with isotropic voxels

The transparency 7', and also the opacity « = 1 — T, are values that depend on the length of the
traversed medium. With the approach we just described, the opacity « stored in a voxel at a given res-
olution in the MIP-map pyramid is not defined for the scale of this voxel. Due to the averaging we use
to compute the MIP-maps, it is defined for the scale A, of a voxel at the highest resolution. The nice
thing is that this allows us to adapt the opacity sampled inside our representation during ray-casting to
the actual step taken between successive samples and corresponding to the actual length of integration
of each sub-volume. Thus, if opacity values are sampled along a ray separated by a distance A’, these
values must be corrected with o’ = (1 — @)+/4x,

4.6.4 Anisotropic voxels for improved cone-tracing

While the voxel representation we describedso far already provides a good approximation of the vis-
ibility when tracing thin cones, it poses several quality problems for large cones that we propose to
address. To do so, we propose a directional voxel model that implements our pre-integrated geometry
model presented in Section 4.3 much more precisely.

The first problem with the isotropic model known as the two red-green walls problem is illustrated
in Figure 4.13. This problem is linked to the way we rely on averaged values in the octree as a
pre-integrated visibility value for a given volume. With this approach, when two opaque voxels with
different colors (or any other value) -coming from two plain walls for instance- get averaged in the
upper level of the octree, their colors get mixed as if the two walls were semi-transparent. The same
problem occurs for opacity, when a set of 2x2x2 voxels that is half filled with opaque voxels and half
filled with fully transparent ones, the resulting averaged voxel will be half-transparent. This wrong
estimation of the opacity and the wrong mix of materials can cause visible artefacts when using too
large cones (as it is the case for the indirect lighting approach presented in Chapter 9).

Ideally, we would like to accurately encode the directional parameters d for
both the T(p, d, s,/) and the @(p, d, s,]) functions (cf. Section 4.2) inside
our MIP-map representation. This would allow a mipmapped voxel to be
fully opaque when seen normally to the half set of opaque voxels, and half-
transparent when seen tangentially to the set (Fig. right). In the two walls
case, we would like the mipmapped voxel to be red when seen from the red
side, green when seen from the green side, and a mix of the two when seen
tangentially.

Storing values for a precise discretization of d would be very costly. To ap-
proach that goal, we propose an anisotropic voxel representation that is built
during the MIP-mapping process, when building or updating the octree with
irradiance values. Instead of a single channel of non-directional values, voxels
store 6 channels of directional values, one per major direction. As illustrated in Figure 4.13, a direc-
tional value is computed by doing a step of volumetric integration in depth, and then averaging the 4
directional values to get the resulting value for one given direction. At render time, the voxel value is

93

retrieved by linearly interpolating the values from the 3 directions closest to the direction the voxel is
viewed.

Figure 4.13. Ilustration of the voxel MIP-mapping process without (left) and with (right) anisotropic voxels
and directional pre-integration. The directional integration steps is illustrated in the right green box.

We chose this simple representation instead of a more complicated one because it is fully interpolable
and can be integrated easily to our voxel storage (cf. Chapter 5). In addition, this directional repre-
sentation needs only to be used for voxels that are not at the full resolution and are not located in the
last level of the octree. Thus, storing directional values for all the properties present in our structure
only increases the memory consumption by 1.5x.

A comparison of image quality between isotropic and anisotropic pre-integrated voxel representations
is presented in Figure 4.14. Voxels are sampled directly from a proxy surface geometry and voxel
view direction is provided by the normal of the proxy geometry. One can observe that many more
details can be captured and reproduced thanks to the isotropic voxel representation.

Figure 4.14. Image comparison with direct voxel sampling on a proxy surface geometry from the octree
between isotropic voxels (left) and anisotropic voxels (right). Observed voxel direction is given by the normal
of the geometry.

94

4.7 Conclusion

In this chapter, we presented our new voxel-based filtered geometry representation together with its
multiresolution pre-integration scheme. This representation is the foundation for our approximate
cone-tracing approach providing a fast estimation of visibility and light transport integration inside a
beam using only a single ray. This voxel model will be stored inside our sparse hierarchical GPU data
structure presented in chapter 5, and the cone tracing scheme will be implemented by our rendering
algorithm presented in chapter 6.

Even if our pre-integrated cone tracing model does not always produce very precise results, especially
in case of large cones, it provides the great advantage of always computing smooth results. Indeed,
the main problem with stochastic supersampling approaches (Sec. 2.1.1) is that they generate a lot of
noise, especially when evaluating large cones (for indirect lighting for instance), which is a lot worse
for realism than a global imprecision. We will see in sections 8.3 how this nice property can be ex-
ploited to very efficiently estimate soft shadows and depth-of-field effects. We will also demonstrate
in chapter 9 how our voxel cone tracing model can be used to estimate indirect lighting in real-time.

Data Structure

Figure 5.1. Spatial partitioning of the octree structure. Left: A voxelized version of the Stanford XYZRGB-
Dragon model (10243 voxels) rendered at around 8OF PS . Right: A 20483 voxels lion model modelized directly
in voxels using 3D-Coat [Shp! 1] and rendered at 60 — 80F PS with GigaVoxels on NVIDIA GTX 480.

In this chapter, we present our generalized data structure and discuss its condensed representation on
the GPU. The design of a data structure suitable for manipulating very large data sets is one of the
three key elements (along with the rendering algorithm and the out-of-core streaming mechanism) of
our voxel rendering system.

Our structure provides a compact storage of the dataset, allows a fast traversal for rendering opera-
tions (Sec. 6) and is easy to modify, allowing interactive updates (Sec. 7). It provides a fast logarithmic
complexity access to the entire dataset and all MIP-map resolutions. It is also designed to allow the
storage of multiple scalar or vector material and shading parameters in order to allow the implemen-
tation of arbitrary shading models.

96

5.1 The octree-based voxel MIP-map pyramid: A sparse multi-resolution
structure

An adaptive space subdivision is essential to render large volumetric scenes and to adapt to memory
limited environments. Such a hierarchical representation allows us to adapt the volume’s internal res-
olution, to compact empty spaces, and to omit occluded parts according to the current point of view.
This reduces enormously the memory consumption and avoids storing the entire information on the
GPU.

< :

(a) (b)

Figure 5.2. Illustration in 2D of our 3D sparse MIP-map pyramid representation, (a) Full MIP-map pyramid,
(b) Sparse MIP-map and an illustrative corresponding octree structure.

5.1.1 Octree + Bricks representation

The structure we designed is a combined structure, mixing both the advantages of a hierarchical rep-
resentation and a regular structure. It is based on a generalized octree structure, for hierarchical space
subdivision (similarly to [LHNO5b]), with a small voxel volume associated with each non-empty/non-
constant node. These small volumes are low resolution regular grids we refer to as bricks. A brick
is a small voxel grid of some predefined size M> (usually M = 8) that approximates the part of the
original volume that corresponds to an octree node (similarly to [CB0O4a, GMAGO8]). For example,
the brick for a root node would be an M? voxel approximation of the entire data set. This kind of
scheme corresponds to a hierarchical bricking scheme as described in Section 2.4.4.

This data representation thus combines the memory efficiency of an adapted structure with small 3D
texture units that can be efficiently cached and allows us to exploit the hardware support of 3D textures
to accelerate rendering (Sec. 6). Figure 5.3 summarizes the data structure of our approach and will be
of help during the following discussion. In 2007 when it was designed and presented, we were among
the first to propose such a kind of structure that can be efficiently traversed entirely on the GPU.

97

Figure 5.3. Our sparse voxel octree data structure. This structure stores a whole voxel scene or object filtered at
multiple resolutions. Bricks are referenced by octree nodes providing a sparse MipMap pyramid of the voxels.

Such a structure combines two major advantages: the octree leads to a compact storage (empty space
skipping, occlusion culling, local refinement), whereas the bricks are implemented as small 3D tex-
tures and, thus, benefit from hardware-based interpolation and cache coherence. Another advantage
is the constant size of the node and brick data types. Consequently, it is simple to store them densely
in memory pools on the GPU (Sec. 5.2.1). This facilitates the update mechanisms which are crucial
to ensure the presence of the data needed to produce the output image (Ch. 7).

An important property of this structure is that it provides information at multiple scales, in order to
match the resolution needed for a given point of view. The bricks linked by interior nodes of the octree
contains filtered data obtained by downsampling higher resolution data located in child nodes. This
filtered data will also enable us to perform high-quality filtering via mipmaps (cf. Section 4.2).

5.1.2 Constant regions and frequency-based compression

Instead of storing a brick pointer, we further allow each node of the octree to store a constant value.
Storing a single value in the case of almost homogeneous regions (empty or core) reduces memory
requirements enormously. In addition, during rendering we can avoid traversing constant regions by
directly computing the region’s contribution by using the single constant value.

Boada et al. [BNSO1] presented a similar approach with the same data structure but introduced the
idea of using a frequency-based level-of-detail selection based on a data homogeneity measure when
building the set of octree nodes to be stored for rendering (the cut).

More generally, the maximum level of subdivision of the octree is determined by the frequency of
variation of the data (homogeneity) in the spirit of [BNSO1]. Indeed, low frequency data like smooth
gradients can be accurately reconstructed by linear interpolation of low resolution voxel data, and do
not require a deep subdivision of the octree. Such data variations are detected during the building of
the structure (cf. Chapter 7) and used as the main criteria to determine the level of subdivision of the
tree.

98

Figure 5.4. Illustration of constant regions encoding inside a voxelized mesh. Source: [SS10]

5.1.3 The N3-tree : A Generalized Octree

The organization we just presented is flexible enough to rely on generalized octrees called N3-trees
(similar to [LHNO5a]), partitioning space and subdivided through an adaptive LOD mechanism driven
by visibility, data frequency and distance to the current point of view. Low-frequency regions are not
subdivided (LOD of visible leaves is the coarsest of distance-based and content-based LODs).

Each node in an N3-tree can be subdivided into N3-uniform children, hence its name. In the case of
N = 2, this results in a standard octree, but using a different N can modify the algorithm’s behavior.
A trade-off between memory efficiency (low N, deep tree) and traversal efficiency (large N, shallow
tree) is easily possible and can be adapted to the repartition of the input data at each scale.

5.1.4 The bricks

The 3D bricks linked by the nodes at each level of the octree are used to provide a fast and interpo-
lated access to the actual voxel data. They are stored inside texture memory allowing them to benefit
from the support of hardware accelerated interpolation and 3D-local cache. Each brick voxel can
store multiple channels of values used for rendering, usually at least a color, an opacity and a normal
distribution (for shading). As illustrated in Figure 5.5, brick voxels can be located either at the center
of octree nodes, or at the corners.

Brick borders and voxel centering

In order to ensure a correct trilinear interpolation by the hardware at brick boundaries, some voxels
must be replicated between adjacent bricks. Replication-free interpolation schemes have been pro-
posed in the past [LLL.Y06], but this comes at the cost of a high runtime access overhead that we want
to avoid. In the case of node-centered voxels, an additional one voxel border must be added around
all the bricks, replicating neighboring bricks voxels. This border introduces a lot of redundancy in
the stored voxel data as illustrated in Figure 5.6. The redundancy is especially important when small
bricks are used, and can induce an important storage overhead. Thus, such a configuration must be
used with sufficiently large bricks, in our case we use bricks of at least 8 voxels (without border).

99

o
@,

o

o

(@)
(@)
Oo|O0 _©O

®@ | ® O
© O O

(a) (b)
Figure 5.5. Comparison between bricks with voxels on node centers (a) and voxels on node corners (b). We
show two bricks (blue an green) et different levels of the tree, brick voxels are represented by colored circles.

Corner-centered voxels allow us to reduce this overhead by providing all data necessary for a correct
interpolation inside octree nodes, but using one less voxel on each dimension. Such a brick config-
uration allows using much smaller bricks and so provides better data compaction and empty-space
skipping. However, corner-centered voxels induce a more complicated filtering process when com-
puting the MIP-map pyramid. While MIP-mapping node-centered voxels can be done using a simple
box filter, corner-centered voxels require the use of a 3*-Gaussian weighting kernel which, for our
case, is an optimal reconstruction filter [FP02a].

9,00 18,00
8,00
7,00
6,00
5,00
4,00
3,00
2,00 1,20 1,10
1,00 1,42 1,20 T,10——105
0,00

=) \/Oxels Border, node centered

1 Voxel Border, corner centered

Border Cost (mem. increase factor)

2 4 8 16 32 64
Brick Resolution

Figure 5.6. Factor of increase in size induced by the replication of voxels between bricks depending on the
brick resolution and both in case of node-centered and corner-centered configurations.

Brick neighbors for interpolation

In order to ensure a correct interpolation between data located in different neighboring nodes of the
octree, special care must be taken with the voxels located on the border octree nodes. Indeed, as
illustrated in Figure 5.7, if any voxel located on the boundary of a brick is not "empty" (or does not
have the same value as the constant value of the neighboring node), then a brick must be attached to
the neighboring node at the same LOD in order to ensure a correct interpolation of any sample taken
inside the neighboring node near the boundary. Thus, within this constraint, an unsubdivided neighbor
could get subdivided in order to provide a brick at the same resolution. Note that this constraint can
be relaxed with very few and imperceptible visual artifacts by allowing the neighboring node to be
subdivided one level higher than the node containing the boundary voxel, providing a brick at half the
resolution of the neighboring brick.

100

I~ I~

(a) RN (b) ~ (c)

Figure 5.7. Illustration of a configuration where no neighboring brick is needed (a), nodes containing a brick
are colored blue, "non-empty" voxels inside the displayed brick are colored green and "empty" voxels are col-
ored blue. Illustration of a configuration where additional neighboring bricks are needed (b) due to voxels
located on the boundary of the node. Modified octree with necessary octree subdivision and new bricks (c).

5.2 GPU implementation

Figure 5.8 summarizes the data structure of our approach and might be helpful during the following
discussion of the implementation.

Our octree structure is implemented as a pointer-based tree. Other approaches like [GMAGO8] (de-
veloped in parallel with ours) requires eight pointers to be stored for each node (in the case of an
octree) for the child, as well as pointers to neighboring nodes. Our structure is much more compact
and requires only a single pointer per node for the child. To make this possible, nodes are organized
into blocks of N3 nodes sharing the same parent node and stored contiguously in memory. Grouping
the children of a node in one such block makes it possible to access all N* child nodes with a single
pointer. In this way, not only is coherence largely improved during the traversal, but also memory re-
quirements are largely reduced. The main focus of our implementation has been to keep the structure
as compact and simple as possible, in order to provide a minimal memory occupancy, good caching
behavior and allow fast incremental updates (Sec. 7).

Even though our structure does not exhibit neighbor pointers between adjacent nodes, we will show in
Section 6.1 that an efficient traversal remains possible. Each tree node also contains a pointer towards
a brick or is indicated as constant/empty space (homogeneous volume).

5.2.1 Structure storage: the pools

Our data structure is stored in pre-allocated GPU memory regions we call pools. These pools are used
as application managed caches (cf. Section 7.3), and their size is fixed once at initialization time. In
a video-game context, they would be chosen depending on available video memory and bandwidth
between GPU and CPU. The node pool stores the octree as a pointer-based tree and the bricks are
organized into a brick pool.

101

Figure 5.8. Our sparse voxel octree structure and its storage inside video memory. Nodes of the octree are
stored in 2 X 2 X 2 node tiles inside a node pool located in video memory, Bricks are stored inside a brick pool
implemented as a large 3D texture.

Node pool

The node pool is implemented in global linear GPU memory (cf. Section 1.3). It is accessed from
the GPU (a CUDA kernel or a Shader) through an 1D linear cache that can be either the texture cache
on Pre-Fermi GPUs or the generic global cache hierarchy. In order to provide a good cache behav-
ior when accessing the structure, a single entity in the node cache actually regroups the N X N X N
sub-nodes of the same parent node, instead of storing each node separately. We call these 2 X 2 X 2
nodes organization a node tile. To enhance traversal efficiency during rendering, both parts of a node
description (sub-node pointer and data, cf. Figure 5.10) are not interleaved in memory, but stored in
two separate arrays. Indeed, since each part of the node description is not used in the same render-
ing sequence, this allows us to further enhance data access coalescing and texture cache efficiency.
This kind of memory organization, where the members of a set of structures are grouped and stored
continuously in memory is a classical approach in parallel computing. This memory organization is
called Structure Of Arrays (SOA), as opposed to Array Of Structures (AOS) that interleaves structure
members in memory.

Brick pool

On the other hand, the brick pool is implemented in texture memory (cf. Section 1.3), in order to be
able to use hardware texture interpolation, 3D addressing, as well as a caching optimized for 3D lo-
cality (cf. Section A.1). Brick voxels can store multiple scalar or vector values (Color, normal, texture
coordinates, material information ...). These values must be linearly interpolable in order to ensure a

102

correct reconstruction when sampled during rendering. Each value is stored in separate "layer" of the
brick pool, similarly to the memory organization used for the node pool.

Figure 5.9. Illustration of the packing of non-empty bricks of our sparse voxle octree inside a 3D texture-based
brick pool.

5.2.2 Octree nodes encoding

Although the octree structure memory occupation is much lower than for the bricks, having a com-
pact representation is still very important for rendering, in order to reduce the amount of data read
during the traversal of the tree, and to maximize cache efficiency. In addition, updates to the structure
(Chap. 7) can also be achieved more efficiently and with less bandwidth usage.

Figure 5.10 shows the data elements in an octree node. Each node is composed of a data entry, and a
sub-node (child) pointer. The data can either be a constant value (for empty/homogeneous volume),
or a pointer towards a brick (a small texture). As indicated before, each entity in the node pool cor-
responds to N3 (usually eight) sub-nodes. It is exactly this property that allows us to only rely on a
single child pointer. Because all sub-nodes are stored contiguously in memory, one can address any
single one by adding a constant offset to the pointer.

Figure 5.10. Compact octree node encoding into two 32bits values.

Our structure produces a very compact octree encoding as each node is represented by only two 32bit
integer values. The first integer is used to define the octree structure, the second to associate volume
data. Of the first, one bit indicates whether a node is terminal, which means refined to a maximum, or
whether the original volume still contains more data and so the node could be subdivided if needed.
Another bit is used to indicate the nature of the second integer value, either it represents a constant
color or a pointer to a brick encoded on 30 bits. The same amount, 30 bits, is used for the child pointer
to the sub-nodes.

103

Pointers representation and scalability

One can see the 30 bit pointer representation we are using as a limiting factor for the scalability of
our approach. Indeed, such pointers when used as traditional pointers would only allow us to address
1GB of data. That means that the size of the pools we are manipulating would be limited to 1GB,
while current generation video cards loads between 1GB and 4GB of video memory. This restriction
would not be currently a problem for the node pool that does not require big storage compared to the
brick pool that actually stores voxel data. It would indeed be a problem for the brick pool that should
be able to fill nearly all the available video memory. In addition, we would like our implementation
choices to stay valid for some years with the amount of embedded video memory increasing quickly.

To overcome this problem and increase the number of elements we can address, we chose not to di-
rectly store GPU memory addresses (in Bytes) of individual elements (nodes or voxels). Instead, we
chose to reference the groups of elements stored inside the pools. These groups are node tiles for child
pointers and bricks of voxels for the brick pointer.

The actual encoding we are using depends on the natural addressing of the actual storage (Texture or
video memory) of the referenced data:

o Node pointer: the index in the pool of the node tiles is stored. Each node tiles is made of N°
nodes and each node is 8 Bytes. For an octree (N = 2), our representation can manipulate node
pools of 230 x 8 x 23 Byte = 64GB.

¢ Brick pointer: bricks are stored in pools located in a 3D texture memory. 3D texture memory
is addressed using a three coordinates vector representing the XYZ position of the voxel in the
texture. We chose to keep this 3D representation in order to maintain a fast conversion into nat-
ural addresses. A brick pointer encodes the 3D index of a brick in the brick pool with three 10bit
XYZ coordinates as illustrated in figure 5.10. In case of bricks of size 8 and containing 4Bytes
voxels (RGBAS), this representation allows to manipulate brick pools of 230 x 83 x 4Byte = 2TB.

104

5.3 Structure characteristics

In order to analyze the main characteristics in terms

of compaction of voxel data, we present the analy-

sis of the structure generated for 2 typical scenes,

the Sponza and the Coral scene presented in the

right figure. Figure 5.11 presents the memory occu-

pancy of both the bricks (left) and the octree struc-

ture (right) depending on the resolution of the brick,

and the voxel centering scheme that is used (node-

centered or corner-centered voxels, cf. Section 5.1.4). We limited the octree subdivision to the level
9, providing a virtual resolution of 512°. One RGBA vector with one Byte per component (RGBAS)
is stored per voxel. With a dense storage inside a regular grid, a MIP-map hierarchy with a maximum
resolution of 5123 storing RGBAS values per voxel takes 1023MB in memory.

For these two typical scenes, we observe that the optimal configuration in terms of storage cost is
the use of 43 voxels bricks with corner-centered voxels. For the Sponza scene, this configuration
leads to a total storage cost (bricks+octree) of 68.48M B + 1.93MB = 70.41 M B for the whole sparse
MIP-map pyramid. In this case, our structure requires only 6.88% of the storage required by a dense
representation. For the Coral scene, our representation requires only 4.9% of the storage of a dense
representation. We also observe that in this configuration, for corner-centered voxels, the overhead
induced by the border (for correct inter-brick interpolation) is around 95%, thus nearly doubling the
memory requirement.

250 10

= No Border

191,16 Useful
200 Voxels Only

156,18 148 W4,79
~ =2 Voxels
Ws’le 159,38 Border
Node-

100 88,F7 Centered
65,89 2845 /4'34 1 Voxel
61,92 Border
35,06 Corner-

0 19,52 Centered

2 4 8 16
Bricks storage

=
wv
o

Storage Cost (MB)

w
o

9
8
7
6
5
4
3
2
1
0
o

2 2 4 8 16 32
= Octree storage

32
Brick resolution

150,38 7
160 / == No0 Border 6,241
140 137,50 Useful 6
Voxels Only
120 -+ 7 5
= 25,38
% 100 - 89,62 =2 Voxels 4
2 g0 Border
V) Node- 3
o 62,86
o 60 5 Centered
g8 45,72 48,76 2
S 40 1 Voxel
o 44,15 Border 1
20 " 24,96 Corner-
0 13,55 Centered 0
2 4 _ 32 g 2 4 8 16 3
Brick resolution =

8 16
Brick storage Octree storage

Figure 5.11. Comparison of the storage cost of our octree + brick structure depending on the resolution of the
bricks and the voxel centering scheme for the Sponza scene (top) and the Coral scene (bottom).

Rendering

Figure 6.1. Examples of renderings done with GigaVoxels. Left: Real-time rendering of a voxelized mesh
object enhanced with a procedural noise (30FPS on NVIDIA 8800GTS). Right: Interactive rendering (20FPS
on GTX280) of a voxel based medical dataset generated from CT scan (2048°, 32GB on disc).

In this chapter, we will discuss how to render the volume representation of a scene stored inside the
octree-based structure described in the previous chapter. This rendering implements, for each pixel of
the screen, our pre-integrated voxel cone tracing algorithm presented in Chapter 4. The rendering as
described here assumes that the data structure contains all data necessary for rendering. Refinement
and update mechanisms will be discussed in the next chapter.

106

6.1 Hierarchical volume ray-casting

The color of each pixel is evaluated by traversing the structure using volume ray-casting [K'W03a,
RGW™'03, Sch05], executed on the GPU using either a CUDA kernel or a fragment shader. In or-
der to proceed in parallel, we generate one thread per screen pixel, each tracking one ray through
the structure as illustrated in Figure 6.2. Each ray implements our cone tracing model described in
Section 4.2 in order to evaluate the volume-rendering integral (cf. Section 2.3.1) and to produce an
accurate antialiased rendering as illustrated in Figure 6.3.

Basically, view rays are initialized on the near plane of the cur-
rent view, covering the whole screen and traversing the scene
front to back. Starting from the near plane, we accumulate color
C and opacity «, until we leave the volume, or the opacity sat-
urates (meaning that the matter becomes opaque) so that farther
elements would be hidden (similarly to early ray termination
in [Sch05]).

Alternatively, when adding volumetric details on a triangle

mesh for instance, a proxy surface can be used to initialize the

view rays. An approximate geometry that contains the non-

empty areas of the volume can be rasterized, delivering the ori- Figure 6.2. Illustration of the volume
gins and directions of the rays. This also provides a starting ray-casting process launching one ray
point and an exit point for each ray, speeding-up the skipping Pper pixel and traversing the hierarchi-
of empty spaces. This proxy geometry can also simply be the cal structure.

bounding box of the scene, when observed from the outside.

Figure 6.3. Our method (top) based on pre-integrated voxel cone tracing does not show the aliasing artifacts
of standard ray-casting with one ray per pixel (bottom).

6.1.1 Global scheme

Each view ray implements the cone-tracing algorithm presented in Section 4.2 that provides us with
an accurate multiresolution rendering scheme. Our data structure (presented in Chapter 5) encodes
a sparse MIP-map pyramid in order to provide different levels of details (LOD). As we have seen in
Chapter 4, each such level contains pre-integrated volumes at a different resolution.

To trace a cone and compute the color of a pixel, successive samples need to be taken along the view
ray inside our sparse MIP-map pyramid. The LOD (Level-Of-Detail) of each sample is chosen in
order to account for the correct pre-integrated volume, and correctly approximate the footprint of the
cone as detailed in Section 4.2 and illustrated in Figure 6.4.

For each sample, pre-integrated geometry and material parameters Cgrgp and N are transformed
(through the application of the local shading model presented in Section 4.5.3) into a pre-integrated

107

in-scattered energy Q that can be accumulated. The accumulation scheme implements our discrete
front to back composition scheme based on Q and T and described in Section 4.2.2.

As detailed in Chapter 5, our sparse data structure is made of an octree with a brick or a constant value
linked to each node. The main problem when implementing this scheme is to traverse efficiently the
octree structure as well as the associated bricks on the GPU.

Ray cone
footprint

Quadrilinearly
interpolated samples >

Sparse mipmap pyramid of pre-
Voxel-based cone integrated values (Octree)

Figure 6.4. Illustration of one ray sampling using quadrilinear interpolation in the voxel mipmap pyramid.

6.1.2 Traversing the structure

Our goal is to take advantage of our octree based data structure to collect efficiently successive sam-
ples along a ray, and quickly skip constant or empty regions. The idea is for each ray, to traverse the
octree structure, find each successively intersected brick of voxel at the correct resolution, and sample
inside it. Our octree ray traversal algorithm builds upon the previous work on spatial data structure
traversal for GPU ray-tracing applications that is presented in Section 2.4.2.

On the CPU, an efficient way to traverse a hierarchical data structure is to rely on a recursive traversal
based on a stack. Until recently, it was not possible to implement such a stack efficiently on the GPU,
due to the lack of fast and large enough dynamically indexable memory accessible from a shader (or
a CUDA kernel). We tested this approach on SM4 generation GPUs (cf. Section 1.3) which provide a
dynamically indexable local memory, but it was totally inefficient. On the same hardware generation,
we also tried approaches using a stack stored in the shared memory [NVI11a] and shared between
tiles of rays. But this approach also appeared slower than the simpler approach we adopted.

Instead, we use a stackless algorithm that descends iteratively from the tree root. This algorithm
is similar in the spirit to the kd-restart algorithm presented in [HSHHO7] and developed for kd-tree
traversal. This allows us to recover each successively needed node (containing a brick or a constant
value) along a ray by doing a top-down traversal (descent) in the tree. It is particularly efficient
mainly because it is simple, requires few hardware registers !, and highly benefits from the memory
organization of the octree structure for cache coherency. This scheme is illustrated in Figure 6.5.

"The number of hardware registers used by a shader or a CUDA kernel is a very important factor of performance on
current generation GPUs [Kir(9]

108

Figure 6.5. Illustration of the structure traversal with bricks marching and LOD computations based on pro-
jected voxel size.

For each descent, a ray starts from the root node and then proceeds downwards as described in Sec-
tion 6.1.4. The descent stops at a node whose resolution is sufficient enough for the current view,
based on the LOD criteria. Such a node either represents a constant region of space, or contains a
brick (cf. Chapter 5). For a constant node, the distance between entry and exit points in the node is
used to analytically integrate the constant material color along the ray, and skip the constant region
with a large step. For a brick, we rely on standard ray-marching into a regular grid (cf. Section 2.3.2)
to accumulate samples as described in Section 6.1.5.

One important observation is that our traversal does not need the structure to indicate correct level-of-
details (while it is necessary in other methods, for instance in [GMAGO0S8]). The needed voxel resolu-
tion is determined during the traversal based on the cone-tracing model described in Section 4.2. As
we will see later, this is a key feature to minimize update operations.

6.1.3 GPU scheduling and traversal efficiency

Our rendering algorithm is split into two main tasks: octree top-down traversal and brick sampling.
These two tasks are performed in one unique pass using a big kernel (or one fragment shader) alternat-
ing between both tasks. Generally, using such a big kernel on the GPU results in high register usage
that provides less occupancy of the computation resources and so less efficiency. But in our case, this
approach proved more efficient than making these two steps separate passes.

Indeed, in order to improve branching coherency and decrease register usage of the shader (a critical
parameter on current GPUs), we tried to split this big shader into two smaller shaders. this leads to a
tree traversal step interleaved with a brick marching, communicating through the video memory. This
multi-pass approach proved less efficient than the unique kernel approach on SM4 GPUs (cf. Sec-
tion 1.3). This is due to the penalty of having to write and read local ray data into the video memory.
Indeed, such a memory access consumes hundreds of cycles [WPSAM10] of latency, and keeping all
these data in register finally appeared more efficient.

109

6.1.4 Descending in the Octree

A descent in the octree structure has do be done for the first sample taken along a ray, and then
each time a sample position ends up outside the current node. This descent is fast because, follow-
ing [LHNO5a], a point’s coordinates in texture space can be used directly to locate each successive
sub-node that needs to be followed in order to get to the node containing the point. This scheme is
illustrated in Figure 6.6.

Descent algorithm

Let’s explain the details for selecting the sub-node of a given node, at each step of the descent of the
octree. As we have seen in Section 5.2, we call a node-tile the 2 X 2 X 2 children of a given node
that are stored contiguously in the node pool. A node-tile is pointed by a unique address stored in the
parent node. Thus, a 3D offset inside a node-tile as well as its address is enough to select a child.

Index;p = int(x* N)
= int((0.6 %2,0.4 % 2))
= int((1.2,0.8))
= (1,0)

Figure 6.6. 2D localization into a node tile to find the index of the sub-node where x lies.

Let x € [0, 1]° be a point’s local coordinates in a node’s bounding box and ¢ be the pointer to its chil-
dren (node-tile). Thus, the 3D offset in the sub-tile of the child that contains x can be simply obtained
by off = int(2x), the integer part of 2x on each axis. E.g., in 1D for one axis with x,;s € [0, 1], there
are two possible offset values for the children, namely 0 (x4 < 0.5) and 1 (x4y5 >= 0.5). Since the
node pool in which we store the nodes is allocated in a linear memory, the 3D offset off needs to be
transformed into a linear offset of f = off . + 2off, + 4off,. To descend into the sub-node containing
x, we can thus use the pointer ¢’ = ¢ + of f. We then update x to 2x — off and continue the descent”.

Level of detail
We will now detail how we chose the LOD (Level-Of-Detail) of the node to stop at when descending

the octree. In order to simplify computations, we approximate voxels as spherical elements and screen
pixels as disks. As explained previously, for each successive position sampled along a ray, we want
to get a voxel whose size will correctly approximate the section of the cone at the current position
(cf. chapter 4). The aperture of this cone is defined by the field-of-view of the current camera, and all
along a ray its diameter projects to the size of pixel on the screen.

Thus, we want the size of each successively sampled voxel to project on the size of a pixel on the
screen. The size of a voxel is determined by the depth in the octree (LOD) of the brick it is stored in,
as well as the global resolution M of the bricks. When descending the octree to find a node, we stop
at the first level containing voxels whose projected size is smaller than a pixel on the screen. More
precisely, at each step of the top-down traversal, we estimate the voxel size V via V := %, where N
is the current node’s side length and M? the global brick resolution. We estimate its projection size

ZNote that this descent can be generalized to N*-Trees using off = int(x = N), and updating x with x = N — off.

110

from the viewpoint of the near plane by V),,,; := V5, where d is the node’s distance to the near plane
n. Based on the field-of-view of the camera, we can then compare this size to the pixel’s size P. If
Vyroj < P, the descent can be stopped.

As detailed in Section 4.3.1, continuous voxel sizes are reconstructed by linear interpolation between
the two closest discreet levels of resolution. Thus, in addition to the brick located in the currently
selected node (that corresponds to the immediately higher level of resolution), the brick located inside
its parent node must also be provided. To make this brick available for marching (cf. next Section),
we have to keep track of the parent node of the current node at each step of the descent.

6.1.5 Brick marching

During the ray-traversal, for each brick node crossed by a ray, we evaluate the volume rendering equa-
tion by sampling along the ray from the 3D texture part corresponding to the brick. More details on
this kind of ray-marching can be found in [EKEO1, Sch05, EHK*06].

This marching scheme inside bricks implements our dis-

crete front to back composition scheme based on pre-

integrated geometry and material properties described in

Section 4.2.2. During this marching, samples are taken in-

side the two bricks obtained during the descent of the oc-

tree. They are interpolated linearly in order to reconstruct

a quadrilinear interpolation in order to provide continuous

voxel footprints. As we have seen in chapter 5, bricks are

stored in a brick pool located in texture memory. Thus, gigure 6.7. Tllustration of the brick march-
for each sample taken in a brick, we rely on the fast and ing process for one ray with quadrilinearly
highly optimized texture sampling hardware to do the tri- interpolated samples.

linear interpolation of the data stored per voxel. We show

in Figure 6.8 a comparison of rendering quality between renderings with and without trilinear inter-
polation.

The brick marching step stops once the coordinates of the next sample ends-up out of the current node,
or a maximum opacity is reached for the accumulated color. Once the ray leaves the brick, we use the
new ray position as the origin for the next top-down descent in the octree. Brick marching must also
stop when the LOD of the next sample falls outside of the range of LODs provided by the two current
bricks. In this case, a new top-down descent must also be performed in order to get lower resolution
bricks.

(@) (b) (©
Figure 6.8. Comparison of rendering quality without (a) and with (b) trilinear interpolation of the samples
taken inside the bricks. Figure (c) display the difference between the two images with a 2x amplification.

111

Stepping distance and adaptive sampling

Following the Nyquist-Shannon sampling theorem [Nyq28], at least one sample must be taken for
each peak and another for each valley of the original signal. At the highest frequency that can be
represented inside a regular voxel grid, each voxel can either represent a peak or a valley of the signal
we sample. Thus, the stepping distance between two successive samples along a ray must be chosen
to correspond at least with the size of a voxel in the brick, in order to ensure a correct reconstruction
of the original signal with minimal sampling.

As we have seen in Section 4.6, both an isotropic and an anisotropic voxel scheme can be used. The
stepping distance used between two successive samples taken along a ray (and so in successive bricks)
depends on this scheme:

e When relying on the anisotropic voxel scheme (Sec. 4.6.4), a directional pre-integration of the
material and geometry parameters is provided per voxel. This pre-integration has been com-
puted specifically for a length of integration / corresponding to the size of the voxel it is stored
in. Thus, the distance between two samples taken in a brick must respect this pre-integration
distance to ensure a correct reconstruction. Since we interpolate linearly between two samples
to reconstruct the required voxel size, we use this interpolated voxel size as the stepping distance
taken between two successive samples. This allows us to use the minimum amount of sampling
along a ray, reducing the number of texture access and thus providing high performance, while
maintaining high rendering precision.

e When relying on the isotropic voxel scheme (Sec. 4.6.3), both the material color, normal dis-
tribution and opacity are simply averaged per-voxel. Thus, in-depth opacity and occlusions are
not correctly handled in the pre-integration. As we have seen in Section 4.6.3, this imprecision
can be compensated during the marching process by using a smaller stepping distance than the
voxel size. In this case, the stored opacity must be corrected to correspond to the actual length
of integration (stepping distance). In practice, we usually use a stepping distance d = %V, with
V the interpolated voxel size. This leads to more texture access, but better rendering quality.

Both schemes compute the inter-sample stepping distance as a factor of the voxel size. Since we make
this voxel size always projecting to the size of a pixel on the screen, this provides us with an adaptive
sampling scheme, reducing the sampling frequency when going away from the camera. As we have
seen in Chapter 5, the octree subdivision is also adapted to the frequency of the dataset. Thus, since
our sampling scheme follows the stored voxel resolution, it also adapts to low-resolution regions of
the dataset.

Brick marching optimizations

Depending on the data stored in the voxel representation, various optimizations can be done to enhance
the efficiency of the ray-marching. An important performance penalty appears when the structure is
configured with a large brick resolution M. In this case, large empty regions can be marched in the
bricks, generating costly texture accessed for data that will not contribute to the final color.

To optimize this case, we rely on the higher bricks available for the MIP-mapping mechanism (quadri-
linear interpolation) to detect fully transparent regions and proceed with larger steps in this case. To
allow this, the lower resolution brick is always sampled first when fetching a value. If this value
appears to be fully transparent, one can know that a step at least the size of a voxel in this lower
resolution brick can be taken safely.

In some applications, one can rely on another optimization. In addition to the geometry and material
properties, an information on the distance to the closest non-empty voxel can be stored per voxel in
constant or empty regions. This distance can be used similarly to proximity clouds [CS94] in order

112

to skip large empty spaces in the volume during marching inside a brick. Some applications like the
procedural noise amplification presented in Chapter 8 require such a distance to an isosurface to be
stored. In this case, using it for such optimization is a welcome side effect.

6.1.6 Empty or constant space skipping

As we have seen, when a constant node is traversed by a ray, its constant value is analytically inte-
grated on the distance traversed inside the node, and the node is skipped directly to proceed with the
next descent in the octree to find the next traversed node. However, care must be taken when such
skipping is done as illustrated in Figure 6.9. Indeed, while a given node can contain a constant value,
its parent node necessarily contains a brick (if it did not, the children nodes would not have been
created). This brick in the parent node necessarily contains the constant value of the child node in all
voxels covering this sub-node. However, due to the linear interpolation, a value sampled in the parent
brick in this area does not necessarily correspond to this constant value, but can be interpolated with
another voxel located outside the constant area (as illustrated in Figure 6.9). This situation can happen
in a limited area the size of half a voxel in the parent brick, at the boundary of an empty node. Thus
when skipping an empty node, this thin border must not be skipped. Instead it must be sampled with
the values interpolated between the constant node value and the values read in the parent brick.

~ ~ N
N ~ ~
< [
~ ~
~ ~

(@) (b) (©
Figure 6.9. Care must be taken with empty space skipping when MIP-mapping is used. White nodes are empty
while blue nodes contain bricks. When a ray skips a node because it contains a constant value (a), artifacts can
arise from the loss of information that would have been used in the upper node’s brick if the empty region had
been sampled (b, c).

Finally, when skipping an empty node, care must also be taken to ensure that the large step taken still
keeps the required LOD level (to approximate the cone footprint) inside the range available in the
constant node. If not, values that should have been sampled in higher bricks will be missed.

113

Figure 6.10. The XYZRGB-dragon voxelized at 20483 voxels into our multiresolution sparse voxel octree
structure and rendered at 60FPS on a GTX280 with our approach using voxel cone tracing.

6.2 Integration with traditional CG scenes

Our rendering approach can be transparently integrated into tradi-
tional CG scenes rendered using rasterization through composit-
ing, as illustrated in Figure 6.11. To do so, our renderer takes the
current color buffer and depth buffer as input, and provides them
updated with new voxel objects rendered with our approach.

All opaque rasterized objects of the scene must be rendered be-
fore voxel rendering. This allows us to optimize voxel rendering
by adjusting the entry point and exit point of each ray based on
the depth present in the depth buffer, and thus allows skipping oc-
cluded parts. Semi-transparent objects must be split between ob-
jects in front of voxel objects, that are rendered before, and objects
behind voxel objects, that are rendered after (with a front-to-back
compositing scheme). Once again, such scheme allows us to op-
timize voxel rendering by initializing the accumulated color and

Figure 6.11. Scene mixing a ras-
terized terrain with voxel trees ren-
dered with GigaVoxels.

alpha of each ray with the input RGBA color of the pixel (provided in the color buffer), and thus to

stop quickly rays that saturate opacity.

114

6.3 Performance analysis

6.3.1 Performance comparison with rasterization

In order to evaluate the performance of our rendering algorithm, we compared it with the perfor-
mance of the GPU rasterization pipeline on two complex scenes: the 12M triangles SanMiguel scene
presented in Figure 6.12, and the 13.5M triangles Coral scene presented in Figure 6.12. These exper-
iments were done on an NVIDIA GTX480. Both scenes were pre-voxelized into a 9 level octree, and
we compared average frame rates depending on the distance of observation. A 16x MSAA (multi-
sampling) was used on the SanMiguel scene and a 32X MSAA on the Coral scene in order to ensure
a similar rendering quality between both approaches (as can be verified on the accompanying screen
shots). We compared performances on 5 increasing viewing distances, with the average number of
triangles projected per pixel ranging from 50 to 1000. We observe that in such situation, the perfor-
mance of our approach is between 3.2 and 41 times faster than the rasterization approach. In addition,
while the performance of the rasterization approach decreases with the increase of the number of tri-
angles per pixel, our approach tends to be faster as much as the object covers a smaller area on the
screen. More analysis would be required in order to evaluate precisely the number of triangles per
pixel starting from which our approach is faster. We estimate it to be around 20-30.

(o))
c
=
wv
©
v
>
<
o
c
o2
=
©
N
~
[}
g
wv
3]
(a4
1400 1265
1200 —

1000 882 / |
765 // ——Raycasting

& 800
o / Rasterization
600 441
400 330/7
200 101 101 103 104 107
0
0,9 1,6 3 4 6

Viewing distance

Figure 6.12. Comparison of rendering speed (FPS) between our sparse voxel octree raycasting rendering and
standard rasterization for the same rendering quality on the San Miguel scene. 5122 framebuffer. Rasterization:
12M triangles, 16X MSAA. Raycasting: 9 levels octree, 3% voxels bricks. NVIDIA GTX480.

(o)}
c
=
wv
©
o
>
©
o
c
]
=]
©
N
53
s
wv
©
o
800
700
600
469
v 500
o
'S
400
300 257
167
200
100 22 20 18
0
1 2 3
Viewing distance

115

697

548
== Raycasting

Rasterization

18 17

Figure 6.13. Comparison of rendering speed (FPS) between our sparse voxel octree raycasting rendering
and standard rasterization for the same rendering quality on the Coral scene. 5122 framebuffer. Rasterization:
13.5M triangles, 32X MSAA. Raycasting: 9 levels octree, 3* voxels bricks. NVIDIA GTX480.

6.3.2 Rendering costs and silhouettes

We analyzed rendering costs on a typical scene depending
on the brick resolution M and the location of the rays on
the screen. These experiments were done on an NVIDIA
GTX480. Figure 6.14 shows in grayscale the time taken by
our ray-casting procedure for each pixel of the screen. We
observe that rays traversing the silhouette of the object tend
to be more costly than other rays. This is due to the fact that
a high octree subdivision is encountered in this area, making
rays traversing many nodes without being stopped early by
opaque materials. We compared the cost of silhouettes and
interior rays on a typical scene (a Mandelbulb [Whi09]), a
3D Mandelbrot fractal, cf. Figure 6.15(c)) with no limit on
the depth of the octree. Figure 6.15(b) shows the average
time (in nano seconds) per ray passing through the silhouette
and interior rays, depending on the brick resolution M used
in the structure. Figure 6.15(a) shows the global rendering

Figure 6.14. Display of ray execution
times in grayscales for a 1024 voxels
scene and 16° bricks. Time is measured
per tile corresponding to the SIMD execu-
tion entities (warps) of the GPU.

performance (in Frames Per Seconds, FPS) of the same scene depending on the brick resolution. All

measures have been made with a Phong shading computation.

The first observation is that the smallest brick resolution M provides the highest rendering perfor-
mance (141FPS for 42 bricks). An increase of the brick resolution M leads to a decrease of rendering
performance, and an increase of the average time per ray, whatever their location on the screen. As we
have seen in Section 5.3, small bricks (but still > 4%) also tend to provide the most compact storage.

116 | chapter 6. Rendering

The second observation is that silhouette rays tend to be on average 1.5X more costly than interior
rays. In addition, the increase of the brick resolution tends to make silhouette rays even more costly,
which is logical given that silhouette rays have to traverse more transparent or semi-transparent voxels
in large bricks.

Rendering performance Rendering time per ray
FPS ¥ nano s/ray
160,00 2754 80,00 66,70
140,00 12821 /%00
’ ’ 60,00
120,00 +— ——— ——109,89 50,00
40,00 -
100,00 30,00
80,00 +— — 20,00 -
60,00 ~— 10,00 -
0,00 -
4000 +— 1 = 5 = 8 3 8
2000 +— — g g g
£ £ £
0,00 ; ; .
Axdxd 8x8x8 16x16x16 Ax4x4 ‘ 8x8x8 ‘ 16x16x16 ‘
(a) (b) (c)

Figure 6.15. Average rendering performance on a GTX480 of our approach on the Mandelbulb scene depend-
ing on the brick resolution (a). Comparison of the rendering cost per ray (in ns) between rays traversing the
silhouette (called "border”) and rays traversing the interior of the object, depending on the brick resolution
(b). Figure (c) shows the full data set (top), parts considered for silhouettes (middle) and parts considered for
interior (bottom).

We also evaluated the relative cost per-ray between the traversal of the octree structure itself (Sec. 6.1.4)
and the marching of the bricks (Sec. 6.1.5), depending on the brick resolution M. Results for the Man-
delbulb scene are presented in Figure 6.16. For small bricks, the rendering cost is largely dominated
by the traversal of the octree, while as expected, when increasing the brick resolution, total time tends
to be dominated by the marching of the bricks.

W Brick sampling

Relative costs of structure traversal phases s octree traversal
100%

90% [| [| [|
80% | [| |
70% [| [| [|
60% | o [
50% [| [| [|
] .]
30% [| [| [|
20% | [[
10% [| [| [|

0% [| [| |

All Border Interior All Border Interior All Border Interior
4x4x4 bricks 8x8x8 bricks 16x16x16 bricks

Figure 6.16. Average relative costs of the octree traversal and marching of the bricks rendering steps, for rays
located on the silhouette, on the interior and on the whole image, depending on the resolution of the bricks.
Tested on a GTX 480.

Out-of-core data management

Figure 7.1. Examples of a very large 81923-voxel scene composed of medical data and rendered at 20-40FPS
using GigaVoxels on an NVIDIA GTX 280 GPU.

In previous chapters, we described our GPU based data structure and we have seen how to use it effi-
ciently for rendering. We will now investigate how to deal efficiently with arbitrarily large amounts of
voxel data, given a limited budget of video memory. To do so, we developed a new out-of-core data-
management scheme based on an application controlled demand paging mechanism, that allows us to
virtualize our voxel data structure. This allows for virtually infinite volume resolution and provides
a full scalability of the amount of voxel data that can be manipulated. It is built around three main
concepts: a ray-based visibility detection, a fast GPU cache mechanism, and a data parallel building
and update of the data structure based on a GPU data producer.

Parts of the structure are incrementally loaded on-the-fly in video memory based on data request
emitted directly during rendering. These parts are maintained in video memory using an efficient
GPU-based caching scheme. This cache is in charge of maintaining the most recently used elements
in video memory, while providing room for new elements by recycling the oldest ones. It is applied
on both the octree structure, and the bricks (cf. Section 5). Contrary to previous approaches, this
allows us to decouple the storage from the actual rendered data resolution. This results in a fully scal-
able solution that can deal with extremely large volumes. This cache was designed as a generic GPU
cache mechanism that can be used in a wide range of ray-tracing applications, beyond our voxel-based
rendering pipeline. In this thesis, we mainly target real-time applications, but our system also allows
off-line usage. Indeed, even for off-line applications, rendering large datasets can be problematic, and
off-line rendering engines increasingly rely on GPU acceleration to speed-up computations [ZHR *09].

118

7.1 Overview and contributions

We address the problem of dealing with very large amounts of voxel data, while the available amount
of video memory is limited, as well as the bandwidth to access it from a larger mass storage. The
amount of memory embedded on the video card is usually many times smaller than the amount of
system memory (cf. Section 1.3). In addition, there are many situations in practice where only a small
subset of this video memory is available for voxel rendering. This is the case for instance in a video
game environment, where much of the video memory is already used by other parts of the game. This
limitation makes it necessary to transfer data from the, much larger, system memory (or even the hard
disk), or to generate them on-the-fly inside video memory (in case of procedural data or data generated
from another representation). Both transfers between system memory and video memory (cf. Sec-
tion 1.3) and procedural generation of data are slow. Thus, it is necessary to carefully control memory
updates. Our goal is to provide a scheme that is able to scale to very large and detailed scenes. In this
context, the whole scene and all its scales can not be permanently kept inside the limited amount of
available video memory, even compacted inside the multiresolution spatial subdivision structure pre-
sented in Chapter 5. One insight is that, for a given point of view, the entire volume does not need to
be in memory for rendering. Only visible voxels at the right scale need to be present, out-of-frustum
as well as occluded data do not need to be loaded.

In such a context, we propose an out-of-core scheme to manage very large datasets that do not fit
entirely into the limited amount of video memory available. As we have seen in Chapter 6, our mul-
tiresolution ray-casting scheme ensures that only the subset of visible voxels, at the exact necessary
resolution (to project one voxel on one pixel of the screen), will be used for rendering. Thus, for a
given frame, only a few voxels per-pixel of the screen are required to be present in video memory,
which represents only a very small subset of the whole dataset. In addition, during rendering, when
the point of view changes, only a small amount of new data is needed (e.g, because it was previously
occluded, out-of-frustum, or at the wrong resolution), while most information can be reused. We
propose a new data management strategy to maintain in video memory only subparts of the voxel
structure needed when exploring a region of a large scene at a given scale, plus additional parts kept
in memory for being reused. This strategy is illustrated in Figure 7.2. The maximum depth that can
be explored is only limited by the number of nodes that can be kept loaded in order to connect to the
root of the octree (Fig. 7.2).

119

Figure 7.2. Illustration of the state of our voxel structure stored in GPU cache during the exploration of a very
detailed scene. Current view frustum position is displayed in red. Displayed nodes and bricks are the ones
actually stored in the caches. Black filled nodes and colored bricks are marked as used for the current frustum
configuration. Others are not marked as used but kept in the cache for later usage.

7.1.1 Application controlled demand paging on the GPU

In order to allow only a subpart of our data structure presented in Section 5 to be physically present in
video memory, we propose to rely on some sort of virtual memory (cf. Section 2.5.1). Virtual memory
has been used for a long time inside operating systems, with demand paging (cf. Section 2.5.1) of
data from the hard disk in order to provide a much larger address space than the available amount of
system memory. Current generation GPUs do not expose such a mechanism to allow the manipulation
and the rendering of datasets (generic data or textures) larger than the total amount of video memory.

In order to bring a virtual memory mechanism on the GPU, we propose an application controlled
demand paging scheme (cf. Section 2.5.1) entirely controlled and managed on the GPU. It is imple-
mented through a new GPU cache mechanism (detailed in Section 7.3) that allows us to keep only a
subset of our whole data structure inside video memory, and to exploit the temporal coherence dur-
ing the exploration of a scene by maximizing the reuse (from frame-to-frame) of data already loaded
in video memory. Data requests on this cache (cache miss) are emitted directly by our ray-tracing
algorithm that ensures a parsimonious traversal, and only visits the strictly required subset of the
whole dataset. Data requests are forwarded by the cache mechanism to a GPU producer (detailed in
Section 7.4) that is in charge of loading data inside the cache in video memory. Note that this demand-
driven mechanism is independent of the usage: data visiting can be caused by primary rendering rays,
but also secondary shadow rays, reflections or indirect lighting computations.

Figure 7.3 illustrates how our new GPU cache is inserted in the memory hierarchy (of current PCs, cf.
Section 1.3) providing the data necessary for rendering the shader cores in charge of the ray-tracing
computations.

120 | chapter 7. Out-of-core data management

Shader Cores

Shader Cores
L1/Texture Cache
L2 Cache

—r

Video Memory

L1/Texture Cache

L2 Cache

Video Memory

CPU
triggered
transfers

Optional GPU
triggered transfers

System Memory System Memory

OS+CPU Paging

~r

Hard Disk

Figure 7.3. Left: Classical cache hierarchy used during GPU based rendering. No caching is available between
the system memory and the video memory. Right: Our new GPU cache that allows on-demand paging of data
inside video memory. Data is either loaded from system memory or generated on-the fly by a GPU producer.

OS+CPU Paging

—r

Quick recall of the previous work

As detailed in Section 2.5.2, texture streaming approaches have been proposed for the GPU rendering
of triangle meshes in order to solve the problem of out of core rendering [TMJ98, CE98, LDN04,
GMO05, LKST06]. The problem with these previous approaches is that they involve complex multi
pass rendering schemes, with costly visibility determination in order to track usage of visible texture
parts and detect missing data. The management of the replacement policy (that controls the strategy
of eviction inside a cache, cf. Section 2.5.1) was done serially on the CPU, forcing the transfer of
visibility information to the system memory. Due to the low bandwidth between video memory and
system memory (Sec. 1.3) and the costly visibility determination, these schemes were restricted to
a low number of managed elements, and thus to a very coarse-grained granularity, in order to allow
interactive processing. In addition, precise LRU (Least Recently Used, cf. Section 2.5.1) replacement
policy was usually too costly to implement. It requires tracking of all the elements used by each
rendering pass, as well as a sorting operation based on the usage of each element. Thus, most of the
previous schemes implement only a simple FIFO (First In, First Out) replacement policy, that does
not ensure the most efficient reuse of data present in the cache. Goss et al. [GY98] proposed to do
direct tracking of data used for rasterization in order to prevent using a complex visibility detection
algorithm, but this approach required a deep modification of the texturing hardware. In addition, it still
required a software (CPU) scanning and management (sorting) of the list of used elements in order to
trigger loading. Such sequential streaming and data caching schemes for video memory buffers and
implemented on the CPU do not scale to very large datasets, with real-time fine-grained management.
The approach of Gobbetti et al. [GMAGO8] developed in parallel to our work also suffers from the
same problems.

The need for application control over paging

Demand paging for real-time rendering applications on the GPU is still a wide open problem. How-
ever, a fully automatic virtual memory and generic paging scheme on the GPU for the video memory,
on the model of what is done on the CPU, would not fit the needs of high performance graphics ap-
plications. Indeed, in the context of software (CPU-based) rendering (cf. Section 2.5.3), multiple

121

authors [CE97, WSBWO1, DPH"03, WDS05] have shown that simple reliance on the virtual memory
and generic automatic paging mechanism of the operating system leads to egregious performance.
Thus, they have proposed specific application-controlled demand paging approaches in order to by-
pass the inefficiencies of the automatic paging mechanism of the operating system. Especially, they
have shown that application control over load/store operations (page-in/page-out), page size and ad-
dress translation (to allow 2D and 3D storage) are essential to provide good performance and to adapt
to the specificities of rendering applications.

In addition, the particularities of the data-parallel processing model of the GPU must also be taken
into account in the design of a cache that will serve algorithms running on such architecture. Indeed,
on the CPU, algorithms are usually tightly synchronized with the availability of the data, because
only a few threads are running in parallel. On the GPU, there are thousands of threads running the
same code in parallel, but there is no parallel multitasking and we do not want individual threads to
proceed to the loading of their own data. This loading would not be efficient since it has to be done in
parallel in order to fully exploit the hardware. Overall, we do not want individual rendering threads
to be synchronised with the data they need. Thus, as we will see, we have to manually manage this
multitasking between rendering tasks and loading tasks in order to provide an efficient data-parallel
paging scheme. This multitasking totally desynchronizes rendering threads from the availability of
the data they need, by collecting data requests in order to answer them all together in parallel, in a
special phase separated from the rendering.

7.1.2 Details on our approach

As we have seen, no automatic paging mechanism is provided by today’s GPUs, and anyway an
application-specific approach is essential to provide high performance paging for rendering appli-
cations. Thus, we propose a very efficient "software” implementation of such a scheme on today’s
GPUs, dedicated to the real-time rendering of very large voxel datasets. This implementation is based
on a new generic high performance GPU cache (Sec. 7.3) implementing a fine-grained LRU (Least
Recently Used) page replacement policy. We make possible the tracking of fine-grained usage and
data requests thanks to a data parallel implementation of the LRU replacement policy on the GPU.
This cache is used to virtualize the access to the data structure in order to keep only a subpart of the
entire dataset inside video memory at a given time, while allowing on-demand access to the whole
dataset.

The most important characteristic of our approach compared to previous methods is that it places the
control of the whole paging and caching scheme on the GPU, removing the need for costly communi-
cations and synchronization between the CPU and the GPU that were previously needed to manage the
cache. It requires minimal interaction with the CPU, freeing it entirely for other tasks. It also removes
the need to maintain a mirrored version in system memory of the GPU data structure. This was previ-
ously required in order to track element usage and to steer data structure updates [GMO05, GMAGOS].
This involved many supplementary CPU processes and the cumbersome maintenance of two data
structures. This also involved a lot of small memory transfers from the CPU to the GPU memory
resulting in a very low efficiency of the updates (cf. our comparison in Section 7.5.3).

Generic high-performance GPU cache

Our application controlled demand paging scheme is built around a new generic cache mechanism
entirely implemented on the GPU. This cache mechanism has been designed to handle the memory
management of any data buffer located in video memory. It basically relies on an LRU (Least Recently
Used, cf. Section 2.5.1) recycling scheme in order to allocate slots for new elements (pages), by re-
cycling slots occupied by those elements that have not been used for a long time. This generic cache

122

is entirely implemented on the GPU as data-parallel processes and its implementation is detailed in
Section 7.3.

As we will see in Section 7.3, our generic cache manipulates batches of requests ("cache misses”) and
usage information generated directly by our ray-tracing (Sec. 6). Batches of requests are forwarded
by the cache to a GPU Provider interface implemented by a GPU Producer mechanism (presented
in Section 7.4) that can implement multiple Provider interfaces in order to fulfill data requests for
multiple caches. The GPU Producer is in charge of actually loading new data inside the cache. Many
different kinds of data producers can be implemented. They can either load requested data from the
system memory, generate data dynamically or provide a mix of both, loading data and modifying
them before writing them inside the cache. They are implemented on the GPU as data parallel tasks,
dealing with batches of requests in parallel, and providing a parallel loading or generation of the voxel
data and octree structure.

e

Interface

Usage Info)
Gazram|| >

Ray-Tracing I c0 Voxel
Octree
Data requests | <7a 1] 1=

e

Usage Info ¢ 3
Data requests ' '

Figure 7.4. Illustration of the virtualization of our voxel data structure using two generic GPU cache mecha-
nisms and a GPU Producer answering data requests and loading bricks and nodes inside the caches through two
GPU Provider interfaces.

Interface

In practice, as illustrated in Figure 7.4, we use two instances of this cache. One to manage the node
pool containing our octree data structure and one to manage the brick pool that contains its associated
bricks (cf. Section 5.2.1). This leads to a unified management of the brick pool and the node pool as
two LRU controlled caches. This allows us to virtualize our whole data structure, enabling deep zooms
and exploration at arbitrary scales. In order to maintain these caches, rays used for rendering provide
information about the nodes and bricks that were traversed during the ray-casting process, and ask for
sub-nodes and for bricks when the ones they need are not present in the cache (cf. Section 7.1.2).

There are situations where large pre-computed datasets do not even fit inside the system memory.
As we have seen, much previous researches focused on providing efficient paging schemes in system
memory for data located on disk or accessed over a network. However, such scheme was not the target
of our research, and we believe that today’s real challenge lies more in the smart virtualization of the
video memory. As we will see in Section 7.4, we still propose a loading producer able to load large
datasets from disk.

Ray-based visibility and data requests

Our approach does not require a costly visibility determination as was the case for previous GPU
rendering approaches in order to detect required missing data and to track the usage of data already
loaded to maintain the LRU replacement policy. Other approaches like [GMO05, GMAGO8] rely on
costly visibility determination passes interleaved with normal rendering passes. They use the CPU to
issue visibility queries or to compute culling, and then to send drawing commands to the GPU. This
requires a complex scheduling of visibility tests in order to be efficient. In addition, these methods
also require a CPU traversal of a clone acceleration structure maintained in system memory. This

123

clone structure is used to issue visibility queries, to load necessary data for a given point of view, and
to manage the LRU mechanism. These approaches involve a lot of transfers and synchronizations
between the CPU and the GPU, making them heavy and difficult to implement efficiently (in order to
carefully overlap transfers and computations).

Our application-controlled demand paging mechanism provides us with what we call a ray-guided
streaming approach. With this approach, visibility information and data requests are collected di-
rectly during the GPU traversal of the structure for rendering (cf. chapter 6), on a per-ray basis. The
idea is to exploit the natural characteristics of ray-tracing within a structured space-subdivision struc-
ture! that ensures an ordered traversal. Indeed, traversing such a structure allows for visiting nodes in
order of visibility along rays. Ray individuality combined with early ray termination (stopping when
accumulated opacity gets saturated) during front-to-back traversal, ensures that only visible parts of
the structure will be visited during rendering. In addition, as explained in Chapter 6, our rendering al-
gorithm ensures the selection of the required level of detail on a per-ray basis, which makes it possible
to request data to the producer at the exact necessary resolution. The result of this per-ray visibility
scheme is illustrated in Figure 7.5.

Figure 7.5. Demonstration of the result of the ray-based occlusion detection on a simple model. When the
loading mechanism is disabled, one can see that occluded parts of the structure have not been loaded.

This approach leads to a very good solution to treat very complex multiscale scenes. In this way, it is
possible only to trigger data load based on what is actually needed for the current point of view. Each
ray informs accurately about the needed data instead of having to heuristically estimate the need for
data, as it was the case with previous methods. This also leads to minimal CPU intervention and no
synchronization, since both LOD and visibility computations are performed per-ray on the GPU.

Another advantage of this ray-based visibility and data request scheme is that it allows totally arbi-
trary rendering schemes. Indeed, since each ray individually reports its own data usage and emits its
data requests, rays can be launched in any direction, not necessarily in order to directly compute an
image, as shown in our global illumination application presented in Chapter 9. This also makes it pos-
sible to support general ray-tracing schemes, with an arbitrary number of secondary rays as illustrated
by our soft shadow application presented in Section 8.3. This new scheme provides a great flexibil-
ity compared to previous approaches (Sec. 2.5.3) that were final rendering centric and restricted to
frustum-launched rays, with no support for secondary rays.

Structure updates and building

Since not only the bricks but also the octree structure are managed with our cache, GPU producers
are actually in charge of providing data necessary to build the octree structure dynamically. It is im-
portant to note that in this context, because of the cache mechanism, updates of the octree structure
are performed lazily and only when necessary, while other approaches need to update it entirely at

'Like an Octree, a Kd-tree or a regular grid, but not a BVH for instance whose nodes can overlap.

124

each frame [GMAGO8]. The basic principle is to subdivide or fuse nodes in the octree in an LRU
manner. When node tiles ar no longer used, they become more and more prone to be recycled inside
the node cache. Thus, this also provides a progressive and lazy un-building of the structure during the
exploration of a scene.

At a given point in time, the cached octree leaves do not necessarily correspond to the nodes used
during the rendering (Sec. 6). For instance, it might be that the current tree encodes a very fine rep-
resentation, but due to a distant point of view, the used data might solely be taken from higher node
levels. The unused nodes, although currently useless, might need to be reused later. Hence, it makes
sense to try to keep them in memory as long as no other data is needed. But if new data is needed,
these are the first elements to be overwritten.

125

7.2 Multi-pass update scheme and progressive refinement

During the traversal of the hierarchical volume described in Section 6.1, rays visit several nodes in the
structure. For some rays, the data needed to get the right volume resolution (according to the LOD
mechanism described in Section 4.2) might be missing. Nodes might need to be subdivided, or nodes
could be present at the right depth, but might miss the corresponding volume brick. In both cases, a
ray will ask for missing data by issuing a data request to one of the two caches.

In classical CPU-based paging mechanisms, when a thread tries to access data that is not available in
the cache, this thread gets suspended until the data have been loaded and are available in the cache.
However, in the massively data-parallel environment of the GPU, we do not want threads to be auto-
matically and individually suspended, and data loading to be processed immediately. Indeed, we want
to process data requests all together and in parallel, in order to efficiently load or create required data.
We want to maintain a coherency in the processed computations, in order to efficiently use the data-
parallel architecture. Thus, we want to separate data loading operations from the rendering operation,
and process them in a separate pass. Data requests on a cache will not be processed immediately,
but instead will be added to a batch of requests to be processed in a separate update phase during the
cache management presented in Section 7.3.

Thus, in order to manage the cache, our system operates in two steps, it interleaves a ray-tracing
phase and an update phase. The first step traces rays until they need to render a part of the scene that
is currently not present in the cache. In this case, the corresponding rays trigger a data request by
adding it to the batch of requests as detailed in Section 7.3.3.

As we will see in Section 7.2.2, once a ray has issued a data request, two strategies can be employed.
If we want to ensure a maximum rendering quality, the ray suspends its execution and saves all nec-
essary data in a state context buffer to continue rendering in a successive rendering pass. Multiple
rendering passes are issued per frame in order to provide all necessary data to get a complete image.
On the contrary, if the priority is to ensure real-time interactivity, the ray can continue rendering using
the lower resolution data present in the cache. In this case, only one rendering pass is used per frame.
As we will see, these two strategies can be combined in order to provide a continuous range of degrees
of interactivity.

7.2.1 Top-down refinement

The rendering process is organized into passes. Each pass interleaves a ray-casting phase, producing
an image and a batch of requests, and an update phase. The update phase fulfills update requests by
uploading new data to the GPU and updating the structure providing the rays with the necessary data
for the next ray-casting pass.

Structure updates are then executed incrementally, from top to bottom, subdividing nodes one level
at a time. This scheme ensures that unnecessary nodes (not accessed by rays because of occlusions
for instance) will never be created nor filled with data. With this strategy, we avoid excessive data
refinement and we reduce data requests, resulting in a higher frame rate.

This multi-pass incremental update scheme is illustrated in Figure 7.6 with a simple case employing
a real-time update strategy, giving the priority to the loading of the bricks over the subdivision of the
octree:

e In pass (1), the ray hits a node not initialized and requests data and subdivision (since needed
LOD is not reached). At the end of the pass, a brick is loaded for the node and it gets subdivided.

e In pass (2), the ray goes down, traverses newly created nodes and uses the higher level brick in
order to produce an image. Data is requested for both nodes and the LOD is still not reached.
The first node gets a brick and the second a constant value.

126

e In pass (3), the ray traverses the first new node and requests data for it. Subdivision is not re-
quested since the correct LOD is reached. The second new node is not touched because, due to
opacity, the ray stops in the middle of the upper brick.

o Starting with pass (4) the ray gets all data it needs and no more updates are necessary.

Figure 7.6. Illustration of ray-guided multi-pass update sequence for one ray.

7.2.2 Update strategies

The progressive top-down refinement scheme we use (first low- then high details) is very useful to en-
sure real-time responsiveness even in the case of fast movements and small time budgets per frames.
We provide a control over the achieved image quality and interactivity by allowing the update scheme
to be balanced between a real-time and a "quality"” strategy.

Real-time strategy

In a full real-time strategy, only one rendering and one update pass are performed per frame. This can
be achieved by producing an image even when data are missing. This is done by allowing rays to rely
on a coarser brick that is actually present in upper levels of the octree when a brick is not present at
the right resolution.

Another important parameter that controls the building of our structure is the respective priority be-
tween the subdivision of the octree and the loading of the bricks. Indeed, for a given node at the wrong
LOD encountered by a ray, a choice has to be made between first requesting a brick for this node, and
first requesting a subdivision. In the context of a real-time strategy, priority is given to the loading
of the bricks. Giving priority to the brick requests allows to continuously get an increasing rendering
precision among multiple frames. In addition, we ensure that lower resolution bricks will always be
available in the octree, which allows us to always produce an image.

127

The disadvantage of this strategy is that for fast movements, due to the top-down building scheme, this
leads to a lot of data loaded at lower resolution before the actual needed resolution is reached. Thus,
this real-time strategy leads to higher convergence time before reaching the correct view resolution.
With this approach, it takes more time to reach the correct required resolution, since time is taken to
load bricks that are not needed at the correct LOD.

Quality-first strategy

In a quality-first strategy, the priority is not to quickly display a complete frame, but to quickly subdi-
vide the octree structure in order to get a maximum quality as fast as possible. This is done by issuing
multiple interleaved rendering and update passes per frame. Thus, priority is given to the subdivision
of the octree. In this case, the required octree subdivision can be reached much more quickly, since
no time is taken to load unnecessary bricks. However, in the context of a real-time strategy, such an
approach would make the rendering quality converge less smoothly to the correct one.

In this mode, rays do not use lower resolution bricks to provide a complete image, but instead keep
requesting subdivisions on the structure as long as the needed resolution is not reached. Once the
needed subdivision is reached, rays ask for the required brick at this level of subdivision in order to
produce an high-quality rendering.

Balanced strategy

In order to provide a control and a smooth transition between these real-time and quality strategies, we
control the number of passes done per frame in order to get the higher rendering quality in a given time
budget. To achieve this, quality-first passes are first computed with priority given to the subdivision
of the octree, in order to quickly update the structure to the needed resolution. Then a final real-time
pass ensures that a complete image will be displayed. The number of quality-first passes issued can
be determined based on the remaining time budget for the frame, and an heuristic estimation of the
time required for the final real-time pass.

Multi-pass ray-casting is achieved by providing rays the ability to suspend their execution whenever
data are missing, and then to continue it from this point in the following rendering pass in a stop-and-
go manner. The number of passes that is authorized per frame determines the degree of interactivity
of the rendering.

The choice of the balance between real-time and quality strategies depends on the context of the ap-
plication. For games for instance, it is acceptable that some frames show fewer details, to favor high
frame rates which can be achieved by producing an image even when data is missing. For this, rays
can rely on some coarser data that is actually present in upper levels in the tree. For off-line rendering,
physical simulations, or movie productions, for instance, it is important that each frame is accurately
computed and, hence, the stop-and-go solution is most appropriate.

128

7.3 A High Performance GPU Cache for graphics applications

In this section, we detail the design of our generic GPU cache mechanism. While this cache has been
primarily developed to manage our voxel octree data structure with bricks (Sec. 5), we demonstrate
in Section 7.5.5 that it is generic enough to be used with any kind of data structure in the context of
GPU ray-tracing.

Our cache automatically manages dedicated video memory regions we call pools (cf. Section 5.2.1).
It can serve linear global memory sections as well as textures (cf. Section 1.3.4). As illustrated in
figure 7.7, it is composed of a request interface (described in Section 7.3.3), that is used by ray-
tracing kernels to emit data requests and usage information, a data loading interface allowing user
defined data Providers (cf. Section 7.4) to load data inside the cache, and a management mechanism
implemented as data parallel tasks (Sections 7.3.4 and 7.3.5).

Figure 7.7. Global view of our generic GPU cache mechanism.

While previous caching methods for the GPU were CPU centric and relied on sequential computa-
tions, our method is completely run on the GPU. Having the cache managed on the GPU provides
several advantages. The basic motivation for a parallel implementation of the cache mechanism is
provided by the Amdahl’s law [Wik11] that describes the maximum speedup that can be expected
from a system given the ratio of codes running in parallel. Basically, this law shows that in order
to get a maximum speedup from an increase of parallel processing units, it is critical to parallelize
a maximum portion of a system. Thus, in order to offer a maximum scaling of our system with the
increase of parallel processing power of the GPU, it is important to make a maximum portion of our
system run in parallel. We demonstrate that managing a cache as a series of data-parallel tasks ap-
pears a lot more more efficient and greatly reduces management cost (Sec. 7.5.4). We also show how
parallel streaming of the data directly from the GPU greatly reduces transfer overhead compared with
CPU-triggered copies (Sec. 7.5.3). This scheme also allows efficient GPU data production that were
not possible with previous approaches (Sec. 7.4). It also removes nearly all synchronizations between
the GPU and the CPU, and totally frees the CPU from management computations.

Our system relies entirely on the GPU to manage the data structure, download necessary data from
central memory (thanks to the latest CUDA features), and manage the cache mechanism. The CPU
is used solely to make sure that the required data are available, making any supplementary work
unnecessary. Our mechanism relies on the compute capabilities of modern GPUs (>= SM4.0, cf.
Section 1.3). While we demonstrate it on NVIDIA hardware with a CUDA implementation, one can
also easily implement it using a multi-vendor language like OpenCL or DirectX compute.

129

7.3.1 Cache structure and storage

As described in Section 5.2.1, we rely on video memory regions (that can be textures or linear mem-
ory) we call pools to store both the nodes of our octree structure and the voxel bricks. We generalize
this concept of data pools in the context of our generic cache mechanism. These pools represent the
physical memory regions managed by a cache mechanism. Following the formalism of virtual mem-
ory systems (cf. Section 2.5.1), a data pool is divided into fixed-length pages that are the atomic units
managed inside a cache.

As for any virtual memory system, pages inside a pool are addressed through a page table. We define
the page table as a simple array of references (pointers) into a pool, with no assumption on its actual
structuring or spatial organization. Similarly, the actual encoding of a reference is defined depending
on the client application, it is usually simple indexes inside the data pool.

Figure 7.8. Illustration of the two components of our generic GPU cache structure: a page table with entries
referencing pages inside a data pool. The data pool can contain an arbitrary number of layers

This pair of page table plus data pool defines our generic cache structure as illustrated in Figure 7.8.
Since we target graphics applications, a data pool can have a 1D, 2D or 3D spatial dimensionality.
Each data pool can be composed of multiple data layers (or fields) that are stored separately in mem-
ory. Each layer can contain a different set of data associated with each element of the pool. They
can be implemented using different physical memory (texture or linear memory) and spatial organi-
zation (linear, Morton curve, texture blocks...). Elements can be of different sizes in each layer, only
a one-to-one mapping between elements needs to be ensured (same number of elements in all layers).
Typically, a pool containing voxels for instance could be composed of two layers: an "RGBAS8" color
layer stored in texture memory, and a "float" specular exponent layer stored in linear memory using a
Morton curve.

Pages represent the basic element manipulated by the cache. They have the same 1D, 2D or 3D spa-
tial dimensionality as the data pool they are stored-in. Their size can be freely configured depending
on the application and the desired granularity of data management. The choice of this page size is
one of the critical elements to ensure high performance of an application-controlled demand paging
mechanism. It must be adapted to the data structures stored inside the cache.

A cache (meaning a data pool and its associated page table) can be used to store multiple instances of
the same kind of data structure. As we will see in Section 7.4.1, in the context of real applications (in
video games for instance), this allows us to store the structures of multiple different objects inside the
same caches.

130

7.3.2 Building GigaVoxels data structures based on cached storages

In the context of GigaVoxels, we want to ensure a full scalability of our data structure with the increase
of the resolution of the dataset. Thus, we propose to store both the octree structure and the associated
bricks (cf. Chapter 5) in two separate caches, meaning that we manage both the node pool and the
brick pool with two instances of our generic cache mechanism as illustrated in Figure 7.9. A page of
the brick pool is sized to contain a single brick. Similarly, a page of the node pool is sized to contain
a single node tile*. This allows us to virtualize our whole data structure, enabling deep zooms and
exploration at arbitrary scales.

Figure 7.9. Illustration of the implementation as caches of the node pool and the brick pool storing the different
elements of our voxel data structure.

Other approaches like [GMAGO8] only manage the voxel brick dataset using a caching strategy, but
limit the octree structure to a maximum resolution. In their case, the octree structure stored in video
memory is updated every frame from a clone structure located in system memory. Such an approach
induces a static transfer cost of the structure every frame, limiting its maximum extent. In our case,
the rendering algorithm autonomously chooses the data resolution used for rendering (cf. chapter 6),
which makes it possible to completely decouple the actual storage of the structure in the cache, from
the state of the octree needed to render a given frame. In normal rendering situations, the stored struc-
ture is much larger than the one actually needed for a given frame that is only a subset of it. Thanks
to that, many parts of the structure that are kept in the cache can be reused during the exploration of
the scene.

Virtualized hierarchical page tables

The interesting point in our approach is that, instead of relying on dedicated page tables inside the two
caches, whose sizes would limit the maximum number of different pages (node-tiles and bricks) that
could be stored in each cache, we use the octree structure itself as the page table for the two caches.
Indeed, both bricks of the brick pool and node-tiles of the node pool are already referenced by nodes
of the octree in our data structure, as pointers located in different layers of the node pool. Thus, we can
directly use these layers as page tables for the two caches. This scheme is illustrated in Figure 7.10.

2A set of N x N x N nodes, with generally N=2 for an octree, cf. Section 5.2.1.

131

As described in Section 5.2.1, the octree structure is implemented in SOA (Structure-Of-Arrays) order
using two separate arrays. The first array stores the ChildIdx field of the node structure (cf. Sec-
tion 5.2.2, that is used to reference a node-tile that contains the set of sub-nodes (children) of a given
node. Similarly, the second array of the octree structure stores the BrickIdx field used to reference
the voxel brick associated to a node. Thus, the textttChildIdx array is used as the page table for the
brick cache, and the BrickIdx array is used as the page table for the node cache. This configuration
is illustrated in both Figures 7.9 and 7.10 .

Figure 7.10. Illustration of the use of the octree structure itself as page tables for both the node cache and the
brick cache.

As a result, the particularity of this system is that page tables themselves are hierarchical, virtualized
and managed inside a cache, allowing for arbitrary large and detailed domains. In addition, since our
original rendering scheme already relies on the same indirection to access data, no additional cost is
induced by the translation from the virtual domain to the physical storage through the page table as is
classically the case.

132

7.3.3 Interface with the cache

A client application using our generic cache mechanism (in the case of GigaVoxels, the ray-tracing
algorithm) needs to interact in two ways with this cache. First, it needs to emit data requests (cache
misses), when a page (not present in the cache) is required. Second, the application needs to pro-
vide the cache with the usage information required by the LRU replacement policy (presented in
Section 7.3.4), and informs the cache each time it uses one of the page of the data pool.

Our cache is designed to be used in massively parallel environments, with thousands of threads run-
ning in parallel and interacting with it. This is the case for our ray-tracing rendering algorithm pre-
sented in Chapter 6, running one thread per ray launched on each pixel of the screen. In such envi-
ronments, an important question is how to efficiently handle concurrent access on the cache from a
high number of threads to provide usage information and emit data requests. The efficiency of the
interface allowing this interaction is critical for the overall performance of our rendering algorithm,
since it will be used each time a thread (a ray) accesses data present in the cache. Thus, we want a
minimum impact on performance coming from this interface.

Figure 7.11. Illustration of our cache interface for data requests and tracking of used pages, based on a request
buffer and a usage buffer.

Data requests on the page table

A data request is emitted by the client application each time an element of the page table is required
but its associated page is not present in the cache. The goal is to build a batch of requests (a list
containing all page requests) that we will be able to answer in parallel in a subsequent pass using
our data producer mechanism described in Section 7.4. A naive approach would be to use a queue
(FIFO) in which threads directly add their requests. However, in order to prevent race conditions,
concurrent access to such a structure would require costly atomic operations [NVI11a] or complex
parallel schemes [NVI09]. In addition, multiple threads can require the same data and thus ask for the
same page. However, since we want to load this page only once, we must ensure the uniqueness of
the request inside the queue, which represents a very costly operation.

Instead of directly building a list with unique elements, we rely on a special request buffer stored in
the GPU global memory as illustrated in Figure 7.11. Its size is chosen to match exactly the number
of elements in the page table. It is arranged in the same way in memory to ensure a one-to-one cor-
respondence between entries in the page table and in the request buffer. Doing so, we can store one
request slot for each entry of the page table. A data request is simply a boolean flag indicating that
data are requested for a given entry in the page table. Each time a page is required for an entry of the
page table, the slot in the request buffer associated with this entry is flagged. Then, as we will see in
Section 7.3.5, a list of requests is built by collecting all the entries flagged in the request buffer.

133

This scheme has several advantages. First, it ensures the uniqueness of the requests in the request
list. Second, there is no need to enforce any write ordering when a concurrent access is done since
all threads write the same request flag value. This provides us with a fast request mechanism, and
prevents us from relying on an "atomic" write operation that is a very costly operation on a parallel
architecture (and especially on current generation GPUs) due to the fact that it forces the serialization
of write operations.

Data usage information

As we have seen, our cache mechanism relies on an LRU (Least Recently Used) scheme. It allo-
cates slots for new pages, by recycling those occupied by pages that have not been in use for the
longest time. In order to reflect the actual usage of the pages in the cache, the application provides an
information on what pages were used during a given rendering pass.

To collect this information, we use a similar approach than for data requests. We rely on a usage buffer
that associates a usage flag with each page in the data pool, as illustrated in Figure 7.11. Whenever
a page is used during a rendering pass, the application is in charge of writing the associated flag in
the usage buffer to keep track of its usage. In the case of GigaVoxels, this information is provided by
each ray during the ray-tracing of the data structure, for both the brick cache and the node cache.

Implementation details

In practice, both the request buffer and the usage buffer are implemented as an array in linear video
memory so that it can be very quickly accessed from a CUDA kernel (or a fragment shader) during
ray-tracing.

Instead of simply storing a boolean value for each slot of these buffers, we chose to store a 32 bit
integer timestamp. This timestamp is affected with the time of the current pass (a global counter is
maintained) by the threads of the client application in order to flag a slot. Since all rays will write the
same value (the time of the current rendering pass), no atomic operations are needed and the approach
remains efficient and fast. Using such timestamps prevents us from clearing request and usage buffers
at each frame, and entries containing the time of the current pass are known to be the flagged ones for
the current pass.

Fine-grained usage and data request informations

In the scheme we just described in this section, there is no way to order and prioritize usage infor-
mations and data requests provided inside a given rendering pass. However, in a context of real-time
rendering, it can happen that the available time budget per frame is not sufficient to allow processing
all the data requests emitted in a given rendering pass. Thus, it becomes important to prioritize data
requests in order to first proceed with the most important ones. We build upon the hypothesis that the
most important requests are the ones emitted by the highest number of threads (rays). Indeed, in our
GigaVoxels application, these are the ones that correspond to elements with the largest footprint on
the screen. Also, in the context of a small cache with a lot of memory contention, it becomes useful
to sort usage information inside a given rendering pass, in order to recycle in priority pages that were
less visible in a previous pass.

Thus, instead of simply storing a boolean flag, both our request buffer and our usage buffer can store
counters incremented each time a rendering thread requests or uses a given page. During the pro-
cessing of these buffers, counters will allow the sorting of the requests and usage information with
a fine-grained intra-pass priority. Counters are incremented by rendering threads using atomic op-
erations, in order to prevent race conditions on parallel read-modify-write operations. This scheme
forces us to proceed with a cleaning of the two buffers at the beginning of each rendering pass, while
it was not needed with the simpler approach.

134

7.3.4 LRU replacement policy

Now that we have seen how our cache interacts with a client application through its buffer-based in-
terface, we will describe how we manage the LRU (Least Recently Used) replacement policy on the
GPU. This LRU policy is used by our data request management scheme presented in Section 7.3.5 to
determine where to store new data in the cache when a request for a page is emitted. It is based on the
usage information provided by the usage buffer described in Section 7.3.3.

The principle of an LRU scheme is to replace the pages that have not been used for the longest period
of time when new data need to be written into the cache. This scheme allows us to take advantage of
the frame-to-frame coherence of the data needed to render a scene. In order to make sure the algorithm
always discards the least recently used item, it is essential to keep track of what data was used, and
when it was used.

LRU page list

We implement this LRU caching scheme on the GPU by maintain-

ing a list of all the pages present in a cache, sorted by the time LRU Page List

since they were last used (Fig. right). This list is called the LRU

page list, it is stored in linear video memory and updated and main- Lastly used Least recentl,
page idx used page idx

tained using data parallel operations on the GPU. This list contains
as many entries as there are pages in the cache. Each entry stores
the reference (or pointer) to a page in the cache. A reference is a 32bit value whose encoding depends
on the application and the physical storage of the data pool (cf. Section 7.3.1).

In this LRU page list, references to the most recently used pages are kept at the beginning of the list,
whereas those, not used for a long time, are at the end. When n new pages need to be inserted in the
cache, replacing the n pages corresponding to the last n entries of the list perfectly respects the LRU
scheme (cf. Figure 7.12). Using such a list gives us the nice property that the n elements addresses can
be fetched in parallel by the threads in charge of loading data into the cache as described in Section
7.3.6.

Data-parallel LRU management

The LRU management is the first step of the cache management phase that is executed for each cache
after each rendering pass (cf. Section 7.2). Usage information provided by the application through
the usage buffer is used to maintain the LRU page list described in Section 7.3.4 in order to keep the
most recently used elements at the beginning of the list, whereas those not used for a long time are at
the end.

Sorting the LRU page list at each rendering pass on the GPU using a sorting algorithm would be
prohibitive [SA0O8]. Instead, we rely on an incremental sorting scheme that makes use of two order-
maintaining stream-compactions [BOA(09]. This incremental sorting scheme, or maintenance proce-
dure, is illustrated in Figure 7.12. Stream compaction, is a very important primitive building block
for algorithms that exploit the massive data parallelism that is emerging in GPU hardware. It allows,
in a parallel process, to compact elements of a list into a new list containing only the flagged ele-
ments [BOA09]. Basically, the idea is to grab in the LRU page list all the references to pages that
were used in the current rendering pass, and to put them at the end of the list without modifying the
order of the other references.

135

Figure 7.12. Incremental update of the LRU page list based on a per-page usage information provided inside
a usage buffer by the application. Two stream compactions are used in order to keep references to lastly used
pages at the beginning of the list.

As we have seen in Section 7.3.3, usage information in the cache is provided on a per-page granularity
using a usage buffer. We use this usage buffer to generate a usage mask that indicates for each element
of the LRU page list whether it was used in the current rendering pass. In practice, this is done in a
data-parallel way with CUDA by launching a kernel with one thread per element of the LRU page list.
Each thread checks in the usage buffer if the page was used in the current pass. If the stored timestamp
matches the time of the current frame, the element is flagged.

The LRU page list then undergoes two stream compaction steps. The first stream compaction will cre-
ate a list U, that only contains the used elements, the second a list that contains all unused elements
U_. Because inside each of these sublists, the order remains the same, the list of the unused elements
will still have the oldest elements at the end and the most recently used in the beginning. Therefore,
when concatenating U to the beginning of the U_ we inherently sort the usage list.

136

7.3.5 Managing data requests

In the previous section we saw how we efficiently maintain the LRU replacement policy on the GPU.
This scheme provides us with information on where new data need to be loaded inside the cache
through the ordered LRU page list. We will now look at how to handle data requests emitted on the
cache interface (Sec. 7.3.3) during a rendering pass.

Computing the compacted request list

After the rendering pass, the request buffer presented in Section 7.3.3 is filled with the time of the
current frame for each node that needs data to be loaded into the cache. In order to process these
requests efficiently in parallel (Sec. 7.4), we want to collect the needed load operations in a compact
request list. This compacted request list is computed by applying a stream compaction operation (cf.
Section 7.3.4) on the request buffer, as illustrated in Figure 7.13.

We rely on a slightly modified stream compaction operation in order to interpret the timestamp infor-
mation stored in the request buffer as a boolean flag, based on the comparison with the time of the
current pass. We also tweaked the last step of scattering of the stream compaction (cf. [BOA09]) in
order to directly write (without memory read) inside the request list the index inside the page table of
selected elements.

Page Table Request Buffer
e HHHH

O

Request List

List of page
LLLLT] Table indexes

Data Pool

Figure 7.13. Generation of the compacted request list using a stream compaction operation on the request
buffer.

At the end, this compact request list contains the index in the page table of all the entries that require
a data load. In addition to a compact request list itself, the stream compaction operation provides us
with another interesting information that is the length of this list, corresponding to the total number
of flagged elements in the piece of request buffer. Indeed, this length also corresponds to number of
pages that need to be loaded into the cache.

Prioritizing requests

As we have seen in Section 7.3.3, data requests in the request buffer can contain information on the
number of threads that have issued the same request, instead of a simple timestamp. This scheme has
a more important impact on the rendering performance than the simple boolean flag and is not used
uppermost. However, this information on the number of threads issuing a data request can be used
to parameterize the requests. In the context of an application with a strict real-time constraint, the
number 7 of data requests handled per frame can be limited in order to bound the time taken by the
loading of data inside the cache.

137

In our application, data requests that have been triggered by the highest number of threads are likely
to be the most important ones, because they are the ones with the biggest impact in the image quality.
In such a context, it is important to first serve data requests that have been triggered by the highest
number of threads, used as a weighting factor. Thus, once compacted into the request list, data re-
quests can be sorted based on this weighting factor, and only the first n requests of this list can be
answered in a given frame.

Page table localization

As explained previously, the page table of our generic cache is manipulated as a simple list of refer-
ences to pages stored into the cache. We do not want to make any assumptions about the actual data
organization inside this page table. In the case of GigaVoxels, this page table actually stores nodes or-
ganized in an octree (or a set of octrees, cf. Section 7.4.1). In another graphic application, data could
be organized into a Kd-tree or a regular grid for instance. In a non-graphic application, data could
simply be a list of objects with no more structure. In order to stay generic, the cache management
mechanism does not have to know anything about this data organization inside the page table.

However, the actual data organization inside a cache must be taken into ac-
count in order for the producer in charge of answering the data request to
know "what" data it needs to load into the cache. As described in previous | | | | | | | | | | |
sections, a data request is only identified by the index into the page table of | [ocalization Buffer
the entry data is requested for. Thus, there is no relationship between the | | I [|
. L. . L1 | |
index of a page table entry which is provided for the data requests, and the

actual localization inside the underlining data structure.

Page Table

The mapping between an index into the page table and the actual data provider and localization inside
the underlining data structure is made through what we call localization information. Depending on
the application, this localization information can be either implicit (in the case of a simple list or a
grid for instance) or can have to be stored explicitly (e.g. for an octree or a Kd-tree) in a localization
buffer. The actual format of localization information is also totally application dependent since it de-
pends on the underlining data structure. Thus, it is manipulated as an opaque format by our generic
cache management mechanism, with only the user defined data producer interpreting it.

Concretely, we abstract the management of this localization information inside the page table, which
is able to provide a localization information for any entry of the table. In case of explicit localization
information, the actual management of the localization buffer used to keep the mapping between an
index into the page table and a localization information is done by application specific code. If the
page table itself is "dynamic" and managed by a cache mechanism as it is in the case in GigaVoxels,
the localization buffer is updated by the user defined data producer when generating a page.

The localization buffer must be kept as compact as possible, in order to limit the memory overhead
it induces. Explicit localization information does not have to be specified in a per-entry basis for
the page table. Indeed, in our application for instance, since the page table is in fact a layer of our
node pool, it is enough to store one localization information per node-tile, since inside a node-tile
localization can be implicitly reconstructed.

138

7.3.6 Parallel data load

Once the compacted request list has been computed with the data requests and the LRU page list has
been updated to account for the data usage in the current pass, actual data loading into the cache can
be achieved. We are now able to determine what data to load (the entry in the page table) and where
to store it (through the LRU policy), we have everything needed to actually load data into the cache.

The loading of data into the cache is done through a generic mechanism we call a GPU data provider.
GPU data providers are in charge of writing the data into the pages that are physically located into
a data pool (cf. Section 7.3.1). As we will see in Section 7.4, data providers are implemented by
GPU producers that are application dependent and can implement multiple data providers for dif-
ferent caches. Producers can be either procedural, generating new data on the fly inside the cache,
or loading producers, loading data from the system memory. The data loading procedure is initiated
through the launch of a generic CUDA loading kernel, in charge of calling the loading function of the
user defined data provider.

B O
L1 | |
GPU Cache M P

@ Localization T —
info

Requestlist [T T [] [:’>

GPU Dat Write d
LRU Page List : ata [
IIIIIIIIIIIIIIII[:’> ==
Lastly used Recycled i 1" j
page idx page idx

Data Pool

Figure 7.14. Illustration of the parallel loading procedure of data inside the cache.

Scheduling of data loading threads

The generic kernel responsible for loading into the cache is launched by associating one CUDA thread
group [NVI11a] per page that needs to be filled. Indeed, since cache pages contain multiple elements,
having one thread group per page allows the parallel processing of these elements by the producer, as
well as the parallel processing of all the requested pages. In addition, thread groups provide the ability
for the threads in a group to communicate through a fast shared memory [NVI11a]. This organization
of parallel computation allows the threads in charge of a given page to collaborate together for an
efficient loading or generation of the data.

Inside each group, the number of threads is chosen in order to maximize the occupancy of the GPU
multiprocessors [N'VI11a] and to be able to share computations (like destination addresses computa-
tion) between all data written into a given page. This scheduling of the working data-parallel threads
is a critical point for the efficient execution of the production task. It totally depends on the size of the
pages and the actual processing of the producer. Therefore this thread group organization is provided
directly by the user-defined GPU producer.

Interface with user-defined producers

As illustrated in Figure 7.14, the interface between the generic data loading kernel and the user defined
GPU producer is made by passing the index of the page table element that requests data (extracted

139

from the request list) and the index of the page in the data pool to write data into (extracted from the
LRU page list) to the data loading function of the producer, on a thread group granularity. These two
informations provide the producer with both the "what"” data to load and the "where"” to load it into
the data pool.

For each request, the producer will usually use the provided page to write data into, but there are cases
where it will not write data or will not use the provided page:

e The first case is when, during the production of the data, it appears that the generated data are
not really necessary. In the case of GigaVoxels for instance, this happens when during the pro-
duction of a brick, the value of all voxels appears to be the same. In this case, we do not want to
store an actual brick, but instead a constant value in the node. There are also situations where
the data needed to fulfill a request are not available immediately to the producer. In this case,
the producer may differ the loading of these data to a subsequent request.

e The second case is when we want to share pages between multiple entries of the page table. In
GigaVoxels, this situation appears when we want to instantiate a brick inside multiple octree
nodes, or we want to instantiate sub-parts of the octree (cf. Section 8.1). In this situation, the
producer will not write data into a new page, but instead will provide the index of another page
in the pool it wants to reference to.

In order to handle these cases, the GPU producer itself returns the index of the actual page to be writ-
ten into the page table entry. The page table is automatically updated with this index by the generic
loading kernel. In the usual case the returned index is actually the index of the pages that were re-
served in the LRU page list to be recycled to handle this request. If it is not, it means that we are in
one of the two situations we presented previously. In the first case, this index will be null, and in the
second case it will be the index of the existing page the producer wants to reference to.

In the case where the page reserved in the LRU page list is actually used and recycled, an invalidation
procedure described in Section 7.3.7 needs to be executed, in order to invalidate all references in the
page table that were previously pointing to this recycled page. In order to prevent the reference we just
created to be invalidated during this procedure, a flag indicating this case is put into the corresponding
request element of the compacted request list (in practice a single most significant bit is set to one).

7.3.7 LRU invalidation procedure

Once new data have been loaded into the cache, some pages of the cache have been recycled to load
new data, and the data previously stored in these pages have been overwritten. In order to keep the
page table coherent with the new data, a special procedure needs to be applied in order to invalidate in
the page table all previous references to the recycled pages. Indeed, without such a procedure, over-
writing a page might lead to another one still pointing to this location assuming that the old content is
still present. In other words, each time cache pages are recycled in order to make room for new data,
an invalidation procedure has to be executed to remove all the references to the data being recycled.
This cleanup procedure is non-trivial because pages in the cache could be referenced by more than
just a single page table entry (in the case of instantiated data).

This invalidation procedure must be done after the data production step, since the actual page usage
is only known at this time, due to the ability of the producer not to produce data, or to use an existing
page instead of loading a new one (cf. Section 7.3.6).

140

GPU Cache Manager
Page Table
Flagged requests I i i — —
Request list [T 1T 1] - -
Recycn'edpage idx l:’> 1
EEEEEEEEEY B | (2) I
LRU Page List (1) Flag Invalidate
recycled page table]
pages elements
Usage Buffer Data Pool

Figure 7.15. Illustration of our two steps invalidation procedure of recycled page table references.

Two steps procedure

Our solution to invalidate old page table references reliably is to use a two step procedure as illustrated
in Figure 7.15.

First, for each of the requests of the compacted request list indicated as using a recycled page during
the data load procedure (cf. Section 7.3.6), a flag is associated with the actual recycled page in the
data pool (whose index is provided by the LRU page list). This flag is efficiently written in parallel
for all entries of the compacted request list using a CUDA kernel with one thread per entry of the list.

Then in a second step, all entries of the page table are tested in order to detect if they reference a page
that has been flagged as overwritten. If it is the case, and the corresponding entry in the request list
is not flagged as being written in the current pass, the entry in the page table is set to null to indicate
that the referred element is no longer present. Since all invalidation operations are independent, this
step is also executed efficiently on the GPU as a data parallel kernel.

One of the priorities during the design of the whole cache mechanism was to keep its memory over-
head as low as possible. Following that goal, we chose to rely on the usage buffer used for the LRU
management procedure (cf. Section 7.3.4) in order to store the invalidation flag written in the first
step. The invalidation flag is encoded as a special reserved value, not used for the LRU (in practice
we use zero). This trick allows the invalidation procedure not to use any additional memory.

Producer specific invalidation processing

When a page table reference is invalidated, there are some GPU producers that need to perform a
special processing. This is the case for instance for the data load producer described in Section 7.4.3,
that needs to keep a system memory address in the data structure. To allow this scheme, an invalida-
tion function is called by the invalidation kernel (step 2) on the GPU provider interface whenever a
page table reference needs to be invalidated. This invalidation function is in charge of invalidating the
reference in the page table entry and can perform whatever processing it needs. This function is not
intended to perform complex computations that would require a parallel processing. It is intended to
perform only a simple serial processing and it is triggered only using a single thread per invalidated
entry.

This scheme also allows the producer to implement a write-back procedure for cached data. Such a
procedure is not useful in our application, since cached data are simply used for rendering, and thus
are not modified. However, one can imagine other usages of our cache where data stored in the cache
could be modified on the GPU, and would need to be written-back to the system memory when their
pages are recycled, in order to preserve their value for future use.

141

7.3.8 Application specific optimizations

As we have seen, in our GigaVoxels application both a node cache and a brick cache will always be
instantiated in order to build and manage the data structure (Sec. 5). Thus, some memory buffers can
be factored and shared between these two caches in order to save video memory. This is the case for
the request buffer (Sec. 7.3.3) as we will see in the next section. It is also the case for the localization
buffer (Sec. 7.3.3), since in our GigaVoxels application it describes the same octree structure in both
the node cache and the brick cache. Also, all temporary buffers like the compacted request list that
does not need to maintain data between passes can be factored between the two caches.

Factoring the request buffer storage

The request buffer presented in Section 7.3.3 is used to handle data requests on a cache. Both the node
cache and the brick cache use the node pool as a page table. Thus, they both handle data requests on
the same domain. Therefore, we chose to use the same video memory region to store a request buffer
shared between both caches. Inside this buffer, the discrimination between requests emitted for one
cache or the other is made through a special flag added to each request slot as a single bit.

This restricts the ability to emit requests for both caches at the same time for a given element, but
this appears not to be a problem in our application. Depending on the streaming strategy (cf. Sec-
tion 7.2), a single ray will generally issue either a node subdivision request on the node cache or a
brick request on the brick cache, but not both at the same time. Nevertheless, with some streaming
strategies, different rays can sometimes issue different kinds of requests. This is not the case for the
"real-time" strategy presented in Section 7.2 since bricks are always requested before requesting a
node subdivision, in order to always ensure the ability to render a complete image, even if it is not at
correct resolution. However, this is the case for the "quality first" strategy presented in Section 7.2. In
this case, some rays can ask for a brick because they detect that the octree is at the right resolution for
their needs, while other rays can request a subdivision because they need higher resolution. Therefore
in this case a conflict is possible but we do not consider this situation as a problem. Indeed, only one
of the two requests will be handled in a given rendering pass. Fortunately, the latter will be in the next
pass because, now that one request has been handled, subsequent requests for this node can only be
of the other type.

This scheme does introduce a one-pass delay for the request to be handled in case a conflict actually
occurs, but we do not consider it as a problem in the context of an off-line "quality first" strategy. The
main benefit of such a scheme is that it keeps us from relying on an atomic operation on the request
buffer, that would impact rendering performance. This would be necessary in case we would like to
be able to handle both types of requests at the same time using two bits.

Using this kind of shared request buffer is handled by our generic cache by allowing the application
to provide the test function used in the stream compaction operation described in Section 7.3.5. This
test function is used to select the element of the request buffer that will be kept by the compaction
operation. The behavior of the default function is to keep elements with a timestamp corresponding to
the time of the current frame. To handle a shared request buffer, this function is just slightly modified
in order to test the bit indicating the type of request.

With this approach, two stream compactions are still performed on the shared request buffer. One
for the management of the node cache, and the other for the brick cache. In our tests, this stream
compaction appeared to be one of the most costly operations done for the management of a cache.
In order to reduce the cost of having to perform it twice, we rely on an additional optimization pass
that performs a first stream compaction on the whole request buffer that extracts all valid requests.
This compacted request buffer is a lot smaller than the original one. It is then passed to both caches

142

and handled exactly in the same way as if it was the original request buffer. The difference is that the
per-cache stream compaction is a lot faster thanks to the reduced size of the buffer.

Implementation summary

Figure 7.16 presents a summary of all permanent GPU memory regions used by the two instances of
our cache mechanism managing the node pool and the brick pool in the context of GigaVoxels. In this
section, we present a typical usage scenario of our cache mechanism inside GigaVoxels, in order to
analyze the impact our caches in terms of memory occupancy.

Figure 7.16. Summary of every GPU memory regions allocated for a typical usage of our cache mechanisms
in GigaVoxels.

In our typical scenario, the brick pool is allocated with 483 = 110592 bricks, each containing 83
voxels. This represents 384> voxels containing two 32bit values (a 4 byte color and a 4 byte normal
distribution as described in Section 4.5), for a total of 432MB. The node pool is allocated with 262144
node-tiles, representing 2097152 nodes each containing 8 bytes, for a total of 16MB.

e Node Pool: 262144 node-tiles (2 X 2 X 2 nodes), 2097152 nodes x 8Bytes = 16MB
e Brick Pool: 110592 bricks (8* voxels), 56623104 voxels x 8 bytes = 432MB

The node pool is managed with a node cache containing:
o Usage Buffer: 262144 x 4 bytes = IMB
e LRU Page List: 262144 x 4 bytes = IMB
And the brick pool is managed with a brick cache containing:
o Usage Buffer: 110592 x 4 bytes = 432KB
e LRU Page List: 110592 x 4 bytes = 432KB
These two caches share the following memory regions:
¢ Request Buffer: 2097152 x 4Bytes = SMB
e Request List: 262144 x 4Bytes = IMB
e Localization Buffer: 262144 x (4 + 4) = 8§Bytes = 2MB

Thus, total video memory used by the two caches for their operation is 13.84MB, compared to the
448MB of data actually stored and managed by the caches. Thus, the memory required for the man-
agement of our caches represents only a 3.08% overhead in this typical situation.

/7.7.4 Hondling data requests : Voxel producers | 143

7.4 Handling data requests : Voxel producers

Requests made on our generic cache mechanism are handled through a data provider interface. A data
provider interface is actually implemented by a GPU data Producer, that can actually implement mul-
tiple provider interfaces, in order to answer multiple caches. Data producers are in charge of actually
fulfilling data requests by generating or loading all data necessary for a given voxel structure (Sec. 5).
By implementing multiple provider interfaces, a single data Producer can manage the multiple types
of data that are necessary to build a given data structure.

In the case of GigaVoxels, as illustrated in Figure 7.17, producers implement two provider interfaces,
one for the node cache and one for the brick cache. Thus, a producer provides the data needed for
both building the octree structure and filling bricks.

As we will see in Section 7.4.1, each GPU cache can rely on multiple data Providers to get data from.
This makes it possible to connect multiple Producers to the same cache, and thus to store data for
multiple different structures associated with different objects of a scene in the same cache.

GPU Data
Interfaces

. Voxel+Octree Loading
Loading :
Producers Mesh+BVH Loading

Mesh Voxelization
Procedural
Producers Mandelbrot Generator
Perlin Noise Enhancer

Provider
Interface

Mix
Producers

.
[
S e
3 8
o
‘=
te
IS
=
m

Figure 7.17. Illustration of a GigaVoxels data producer implementing a data provider interface for both the
node cache and the brick cache, thus providing both octree nodes and brick data. Multiple kinds of data pro-
ducers can be used, a few examples are shown here.

GPU producers directly write into the video memory from data-parallel production threads generated
by a kernel launch as described in Section 7.3.6. In GigaVoxels, data can come from any kind of
source. We identified three main classes of data producers than can be used within our voxel based
rendering pipeline:

o The first type is loading producers. Loading producers load voxels and octree data precomputed
and stored in system memory. The download of data in system memory from CUDA threads is
made efficient by relying on a direct mapping of the system memory inside the address space of
the GPU [NVI11b]. Whereas previous solutions had to trigger many independent updates, our
solution transfers data more efficiently in parallel from multiple threads.

e The second type is procedural producers. Procedural producers generate data entirely on the
fly on the GPU to answer data requests. This generation can be done based on a mathematical
function (such as a fractal), or from the transformation of another representation stored on the
GPU. For instance, we demonstrate in Section 7.4.6 a mesh-voxelisation producer that gener-
ates data (to build the structure and fill the voxel bricks) by voxelizing a triangle mesh stored
inside the video memory (in a grid acceleration structure). We also show how procedural details
can be added in order to amplify the voxelized mesh.

e The third type is mixed producers. Mixed producers both load data from system memory and
add procedural details in order to amplify them.

144

In practice, our GPU producers are composed of both a CPU and a GPU function. The CPU function
is mainly in charge of passing configuration parameters to the GPU production function in charge of
actually loading data in the cache. In the case of producers loading data from the system memory, the
CPU function is also in charge of preparing data and making them available in system memory so that
the GPU loading function can access them.

7.4.1 Managing multiple objects

We call objects individual voxel-based models that are used in a given scene and that can be rendered
separately using our ray-casting algorithm (Sec. 6). Each object has its own data structure stored in
video memory and used for rendering. Objects that share the same kind of data structure (in our case
the octree-based structure with associated bricks presented in Section 5) can be stored in the same
caches, since the type of data to store is the same and they require the same page size (in our case
page sizes correspond to the size of a node-tile and the size of a brick).

In the cache management scheme described in Section 7.3, we assumed that data stored in a cache
came from the structure of a single object, thus from a single Producer. In practice, we want to be
able to use a cache to store data coming from multiple objects. These objects must be instances of
the same type, since a given cache is dedicated to the storage of a specific set of types organized in
the data layers of a data pool. Data for a given object are provided by an instance of a GPU producer
dedicated to provide these data.

Figure 7.18. Illustration of multiple objects binding to the cache mechanisms in GigaVoxels.

To allow this usage, a GPU cache accepts the connection of a set of producers implementing the
provider interface accepted by the cache. Each connected producer is identified by an instance or
object id. This object id information is associated to each entry of the page table. It is used by the
cache manager to route data requests to the right data provider interface. In practice, this information
is added to the localization information described in Section 7.3.5.

In order to ensure an efficient data generation, a segmentation pass is performed on the compacted
request list (cf. Section 7.3.5) in order to group together all requests intended for a given producer.
These requests can then be handled together by the same kernel call using the dedicated GPU pro-
ducer.

Also, our cache can serve multiple rendering client applications totally transparently through our
cache interface described in Section 7.3.3.

145

7.4.2 Writing into texture pools

GPU producers are in charge of directly writing data inside pages located into the data pools. As
we have seen in Section 7.3.6, this writing is done in parallel by multiple GPU threads executing a
data production function of the producer. The GPU pools used to store the data maintained in caches
can be located inside two kinds of video memories: the linear memory and the texture memory (cf.
Section 1.3). Thus, a GPU Producer must be able to write directly into such memories.

The problem of texture memory

Writing into a linear video memory from a CUDA thread is a straightforward operation. It is done, as
on the CPU, through a classical pointer dereferencing. However, writing into a texture memory is not
so straightforward. Indeed, texture memory can not be addressed directly in CUDA. It is encoded in
a proprietary format dedicated to providing a fast texture sampling. For a long time, this memory was
not even writable from a CUDA thread. With the lastest generation of NVIDIA hardware (based on
the Fermi architecture [fer10]), a Surface API was introduced in CUDA, providing random read/write
access into textures. The problem is that this API only supports 1D, 2D and Layered 2D? textures,
and not 3D textures.

In GigaVoxels, our brick pool is stored inside a 3D texture, to be able to take advantage of the hard-
ware trilinear filtering, the 3D locality cache organization and the 3D addressing. In order to motivate
the usage of a 3D texture, we compared the performance of texture sampling when using a Layered 2D
texture and a 3D texture for ray-casting on last generation hardware. The results of these experiments
are presented in appendix A.1 and clearly show the advantage of 3D textures in our application.

Reverse-engineering texture format

In order to be able to use 3D textures together with GPU based producers, and to keep both fast sam-
pling access during rendering, and fast write access during data loading, we designed an alternative
write access to 3D textures. To do so, we reverse-engineered the proprietary 3D texture format as well
as the CUDA API in order to get a direct access to the texture memory from a CUDA thread through
standard video memory pointers.

7.4.3 GPU load producer

The first kind of producer that we developed for GigaVoxels is the loading producer that loads pre-
computed octree nodes and voxel bricks (generated following our pre-integration scheme described
in Chapter 4) and stored inside the system memory. It is used to implement an actual caching scheme
between a full pre-computed structure stored in system memory and the working subset of this struc-
ture maintained in video memory for rendering. Of course, this GPU producer assumes that the whole
dataset fits inside the system memory, that is usually many times larger than the video memory. We
will see in the next section how we can manage larger datasets that do not even fit inside the system
memory.

Other approaches like [GMAGO8] transfer individual data elements (voxel bricks) from the system
memory to the video memory using copy operations triggered from the CPU. Each individual element
has to be copied to a different position in the data pool that is specified by the LRU scheme. The prob-
lem with such an approach is that the cpu-to-gpu copy operation used to transfer each element has
a long latency of execution, probably due to driver software overhead and synchronizations between

3Layered 2D textures are composed of a stack of 2D textures that do not support interpolation between layers

146

successive calls. This overhead makes a series of such copies very inefficient when a small amount
of memory is transfered per copy operation. In this case, as shown by our experiments presented in
Section 7.5.3, the bandwidth available on the bus connecting the graphics card to the main memory
is not exploited fully and the hardware is underused. This problem appears to be even worse when
doing transfers inside a texture (as it is the case for our voxel bricks). In this case, in addition to the
CPU software overhead, we observed an additional cost per copy operation that is probably due to the
format conversion operation needed to transform the linear memory provided by the application into
a hardware specific texture format. In addition, this problem prevents transfers to texture memory to
be proceed asynchronously, with computations done on the GPU at the same time.

This problem appears very important in our case, since we specifically designes our cache mechanism
to be able to operate on small units of cached data (pages), in order to provide a very fine caching
granularity and reduce over-storage of non-useful data. This is true for the bricks that we try to keep
small (83 or 33 voxels) and for the nodes that we group inside 2 X 2 X 2 node tiles (however, note that
in practice we store nodes inside a linear memory region).

GPU based data download

In order to overcome this problem, we propose to do this memory transfer manually from CUDA
threads directly into our GPU data production function. By doing so, we are able to reach perfor-
mances close to the theoretical bandwidth of the bus as shown in Section 7.5.3. To perform this
loading, we rely on a feature of CUDA named zero-copy [NVI11a] that allows us to access a subpart
of the system memory mapped inside the GPU address space directly from a CUDA thread. To be ef-
ficient and use the full available bandwidth with the system memory, such an access must be made on
adjacent words for each thread of the same CUDA warp [NVI111a] (this property is called coalescing).
We ensure a maximum efficiency of such a GPU producer by carefully choosing the CUDA thread
blocks configuration used by the GPU data production function (Sec. 7.3.6). In addition, this scheme
also ensures a best usage of the available bandwidth with the video memory, thanks to the very large
amount of memory accesses initiated in parallel from multiple warps processed inside different Multi
Processors [NV111a] of the GPU.

Compressed transmission

In addition to the immediate performance gain, this GPU-based loading approach allows us to perform
other interesting optimizations. Data loaded from system memory can be transfered in a compressed
form, and decompressed on the fly by the GPU producer before being written into the cache in video
memory. With such a scheme, the GPU cache acts as a temporary cache for uncompressed data used
for rendering. The interesting point in this scheme is that all computations that are done during the
data transfer are virtually free to process. Indeed, the latency of memory access done from a thread
into the system memory is hundreds of time higher than the latency of an arithmetic operation, thus
even complex computations done in parallel with the transfer inside loading threads happen to be
totally masked by the transfer.

Maintaining system memory source data location

Now that we have seen how we efficiently transfer data from the system memory, one remaining
question is how the GPU producer gets the information on where given data (needed to fill a page) are
located in system memory. The simplest approach would be to keep this information as an explicit
localization information that would be different for both the node cache and the brick cache. It would
be stored inside localization arrays associated with the page tables (cf. Section7.3.5).

147

But this would require a lot of additional storage since one unique system memory location would
have to be associated with each entry of the two page tables. Such a scheme would be like duplicating
the octree structure with system memory locations for the sub-nodes and the bricks, and would require
twice the video memory storage for it.

Instead of relying on such additional localization arrays, we rely on the observation that a system
memory location is only needed for entries of the page table that do not reference a page already
loaded in the cache. Thus, for entries of the page table that contain a null pointer. In this case, instead
of storing a null value inside the page table, we store the address in system memory where the page
can be loaded from. Thus, when the page is requested, this address can be used by the Producer to
actually load the data into the GPU cache. In order to differentiate valid references to pages actually
loaded in the cache, from references in the system memory of pages not loaded in the cache, we add
a special flag to each entry of the page table. This flag indicates if the reference is actually a valid
reference to a page in the GPU cache, or not. Thanks to this scheme, we rely directly on the GPU
data structure to keep references to the data located in system memory, with absolutely no memory
overhead.

7.4.4 Loading from disk and system memory caching

Even if it is very fast, the problem with the loading producer we described in the previous section is
that it restricts the total amount of voxel data that can be manipulated to what can fit inside the system
memory. Allowing out-of-core management of data located on disk was not the priority of our work,
and we focused on the caching inside the video memory. However, we will quickly show that our
scheme can be extended to manipulate data larger than the system memory and stored on disk, with a
special disk loading producer. The overall idea is to add a second level of caching inside the system
memory. This caching is totally demand-driven exactly as our caching inside the video memory is.
In order to keep it simple, and since it was not our primary focus, we implemented a simple FIFO
replacement policy (Sec. 2.5.1).

Instead of directly storing flagged references to pages kept stored in system memory (as it is the case
for our simple scheme explained previously), the node-tiles loaded from the system memory contain
null pointers for all their nodes to both associated bricks and children node-tiles. However, we rely
on the localization information associated with a node-tile (cf. Section 7.3.5) to store the address in
system memory of this tile. Thus, when a sub-tile or a brick is required for one of the nodes of a tile
loaded in the cache, the GPU producer checks in system memory (based on the address stored in the
localization information) if the address of this associated element is present. If it is, the producer can
directly load it from system memory.

If it is not, the producer simply does nothing (and alerts the cache manager as explained in Sec-
tion 7.3.6). However, at each rendering pass, the batch of requests of both the node cache and the
brick cache are downloaded to the CPU*. This allows it to detect from the CPU when given data are
required and needs to be loaded from disk. This loading can be done totally asynchronously from the
rest of the application. At each successive rendering pass, the same data will be requested. If they
have been loaded in the meantime, their addresses will be available in system memory and the GPU
producer will be able to load it. If they have not been loaded yet, the GPU producer still does nothing,
and the request will be fulfilled in a successive rendering pass.

Depending on the memory available in system memory, pre-fetching schemes can be employed in
order to load more data than required from disk. In case these data are requested later, they would be
already present in system memory and ready to be downloaded by the GPU producer.

4This represents a small amount of data per pass and does not entail a significant overhead.

148

7.4.5 Examples of dynamically loaded datasets

Figure 7.19 shows the result of interactive rendering with GigaVoxels of two datasets loaded dynam-
ically and on-demand using our GPU loading producer. The first dataset in 7.19(a) is a lion model
generated using 3D-Coat [Shpl1], a voxel sculpting software. The full dataset has a resolution of
20483 voxels and represents 64GB on disk, with 8 bytes per voxel (a RGBAS color channel and
a vec4 normal distribution). It is rendered with our approach at 60-80 FPS depending on the explo-
ration speed and distance to the object, on an NVIDIA GTX480 and at 512 x 512 rendering resolution.
The second dataset in 7.19(b) has been generated by tomographic reconstruction [CCF94] from the
X-ray scan of a lizard. Its resolution is 2048° and it represents 32GB of data on disk.

Also, the scene presented in Figure 7.1 (this chapter’s teaser) has been rendered at 20-40FPS using
GigaVoxels on an NVIDIA GTX 280. Its full resolution is 81923 voxels and it has been generated by
cloning a single 1024% medical dataset 8 times on each axis. It is stored actually cloned on disk and
loaded dynamically using our GPU disk loading producer.

(@) (b)
Figure 7.19. Two examples of high resolution datasets rendered in real-time using GigaVoxels and loaded
from system memory using our data loading producer.

149

7.4.6 GPU procedural and mixed producers

GPU procedural producers directly generate voxel data and the octree structure, either from a mathe-
matical function, or from another representation. Mixed producers can also be implemented, loading
data from the system memory, then amplifying them using a procedural function. At the end of this
section, we present results obtained with fully procedural producers generating 3D Mandelbrot and
Julia fractals, as well as a producer voxelizing a triangle mesh on-the-fly on the GPU and amplifying
it by adding details using a Perlin noise function.

Compact localization information

In the case of a loading producer as presented in the previous section, no special localization informa-
tion (Sec. 7.3.5) is required on the page tables of the two caches since the only information we need
is the address in system memory where to load data from.

The situation is a little bit more complicated with procedural Producers. Indeed, there is no relation-
ship between the address of an entry of the page table, which is contained in the data request, and
the spatial extent it represents as a node of the octree (position and size). In fact, due to the cache
mechanism, the organization of the nodes in the node pool can be arbitrary and has nothing to do with
the actual scene. However, for procedural producers, a spatial localization information is required in
order to know what portion of space (position and size) needs to be generated. What we need is infor-
mation about the spatial extent (position and size) of the node that requests data, in order to generate
it. This information is stored inside the localization array presented in Section 7.3.5.

To be able to provide a compact information about the spatial organization, we rely on a localization
array composed of two layers :

e To each node, we associate a code, which we call localization code that encodes the node’s
position in the octree and is stored in three times 10 bits, grouped in a single 32bit integer. Each
10bits represent one axis. Bit by bit, this series encodes a sequence of space subdivisions, so
basically a descent in the octree. More precisely, the n/bit of the first 10bit value represents the
child taken on the X axis at level n. Each bit represents the choice (left or right child) along this
axis. This encoding restricts the maximum octree depth to 10 levels. In case more resolution is
needed, we rely on three 32bit values.

e Each node also stores a localization depth value in form of an 8bit integer. It encodes how deep
in the tree the node is located. A localization depth of n means that only the first n bits of the
localization code are needed to reach the node in the tree.

Consequently, these two values describe exactly one node in our octree subdivision structure. This
allows us to derive exactly what information needs to be loaded or produced by the GPU producer,
both in terms of octree nodes and in terms of bricks. Of course, values in these two arrays need to be
updated or created when nodes are written in the node cache by the GPU producer.

In practice, it is actually possible to reduce both array sizes by a factor of eight by storing these values
per node-tile (group of eight nodes) instead of per single node. Due to the fact that nodes in a tile are
grouped together in memory, the node address allows us to complete its localization code. We can
derive the final bit that misses from the node’s localization code with respect to the tile’s localization
code from the last bit of the node’s address.

150

Examples of procedural and mixed producers

Figure 7.20 shows two images rendered using GigaVoxels and a fractal-based procedural GPU pro-
ducer. The first image 7.20(a) has been rendered using a 3D Julia procedural function amplified using
a Perlin noise that adds holes and detailed textures. The second image 7.20(a) uses a 3D Mandel-
bulb function [Whi09] that is a special 3D Mandelbrot set. Both are rendered at 70-90FPS on an
NVIDIA GTX480, they provide "unlimited" resolution, with only the localization information and
floating point precision limiting the maximum depth of the octree.

(@ (b)
Figure 7.20. Two examples of highly detailed datasets generated on-the-fly by a fractal-based procedural GPU
producer and rendered at 70-90FPS using our approach on a GTX480.

Figure 7.20 shows two images rendered in real-time using mixed GPU producers. Image 7.21(a) has
been computed using a voxelization GPU producer that computes a distance field on-demand from of
a triangle mesh stored in video memory. It adds a Perlin noise on the voxelized data, with a lookup
table used to generate a lava-like material. Image 7.21(b) presents a rendering with GigaVoxels of
the 4096° Visible Human dataset, enhanced with a Perlin noise providing a Mummy-like look. This
dataset represents 256GB on disk (one RGBAS value per voxel) and is loaded dynamically using our
disk loading GPU producer 7.4.4. It is rendered at around 15-20FPS on an NVIDIA GTX 280.

(a) (b)
Figure 7.21. (a) : Triangle mesh voxelized on-the-fly and amplified using a Perlin noise, rendered at 70FPS on
a GTX280. (b) : 4096° voxels Visible Male dataset, amplified using a Perlin noise and rendered at 15-20FPS.

151

7.5 Results and performance analysis

In order to evaluate the performance of our out-of-core caching and streaming mechanisms, we stud-
ied their behaviors in typical rendering scenarios. All these experiments have been made using an
NVIDIA GTX480 GPU and an Intel Core 2 Duo E6850 CPU @3GHz.

7.5.1 Repartition of the costs per frame

The actual performance of our paging system needs to be evaluated on a sequence. Thus, in our first
case study presented in Figure 7.22, we analyze the repartition of the costs per frame of the differ-
ent processing phases, on a typical sequence of exploration (presented in Figure 7.22 top) inside the
Mandelbulb scene. This scene is generated by the fully procedural fractal Producer presented in Sec-
tion 7.4.6. We use the real-time update strategy presented in Section 7.2.2, with only one rendering
pass and one update pass per frame. We present the repartition of the costs (in ms), for each frame of
the sequence, between the rendering phase (our ray-casting presented in Chapter 6), the data manage-
ment of the two caches (node and bricks), the loading of the nodes and the loading of the bricks inside
the caches. The top graph shows the repartition of the timings when the exploration is done at "nor-
mal" speed, during 64 seconds. The bottom graph shows the results for the same sequence explored
at 4x the normal speed, during 16 seconds. The first observation is that the rendering time is quite
constant all along the sequence. It slightly increases as the camera zooms inside the dataset, most
probably due to the deeper traversal of the octree that is induced. On average, the rendering phase
represents 56% of the total time of a frame at 1x speed, and 34% at 4x speed. Inside the ray-casting
pass, we also measured the cost of interacting with the two cache interfaces (Sec. 7.3.3). On average,
emitting data requests and usage information on the two caches only increases the total rendering time
by 5%.

152 | chapter 7. Out-of-core data management

Time (ms)

HONMANDDOUMNMONT AT ANDNDNOMNONTATOWLNDNDONONSTHONODOWOMOIN S 0
NWNOVOMOUANDATNOOANLNOMWOOOEATOVAOAINTHRONWMIOAMNMOOADATNONLW VO
HﬂHﬁNNNNrnmmq-<r<r<rmmmmwwwv\r\r\r\wwwwmmmggag:
1X ® Rendering ® Caches Management M Node Loading ™ Brick Loading Frame
120,00
100,00
80,00
«
£
o 60,00
E
=
40,00
20,00 -
0,00
=H O ANDNDOMNMONT AL NDNDOUMNMONSTST IO ANDDOMONT HOLANODNDWOLOMOTIN S
HANANNOST D NDONNODDDO AN NNMOTTNOONNVNDNO AT NOMOMST W O OIS
™ A A A A A A AN NN NN NNNNNN
4X M Rendering ® Caches Management M Node Loading M Brick Loading Frame

Figure 7.22. Repartition of the costs (in ms) per frame of the main operations computed in our approach, on
a 64 second exploration sequence inside the Mandelbulb scene. The top image shows 6 snapshots of the whole
sequence, first graph times with normal speed exploration, second graph times with 4x exploration speed.

The cost of the management of the two caches (LRU scheme Sec. 7.3.4 + data requests management
Sec. 7.3.5) is totally constant and represents on average 4% of the total frame time at 1x speed and
2.5% at 4x. As we will see in Section 7.5.4, this cost is very low compared to the cost of the CPU
management schemes employed in other approaches. The cost of loading nodes inside the node cache
is very low, and represents on average 1.5% of the total frame time. However, as expected, the cost of
generating bricks that contain actual voxel data and loading them inside the brick cache is very high.
It represents 30% of the total frame time on average at 1x speed, and on average dominates the cost
of a frame at 4x with 57% of the frame time.

7.5.2 Cache efficiency

In our second case study presented in Figure 7.23, we analyze the efficiency of our cache mechanism
in the management of the brick pool. On the two graphs, we show the percentage of data that have
been loaded and used inside the brick cache for each frame of the same sequence than the one used
in the previous section, with 4x exploration speed. The top graph shows results when using a 512MB
cache, while the bottom graph shows the results with a smaller 128MB cache. This allows us to com-
pute the ratio of data used in the cache per frame over the data loaded. This ratio appears to be very
good, with only 2.6% of cache misses on average with the 512MB cache, and 5.9% with the 128MB
cache.

Since we load data entirely on-demand, without using any pre-loading of data (based on statistical
prediction for instance), almost all loaded data are actually used in the subsequent rendering pass and
this does not generate trashing. Trashing can only appears when the total amount of data required for

153

a given frame is larger than the size of the cache. In this case, quality reduction strategies have to be
employed to ensure real-time rendering.

30
20

10

Percentage of the cache

0

7
0N ANOWOWMONT VL ANOODWOMONST =00 oNOOWmMOIN S QD O MmO
AN AN T NN ONNOOODNDO A ANNOMOSCS TN OO 0D ONDO dd N MMSST N O O N

— ™ o = AN NN AN NN NN AN NN

d Frame

512MBBrICkCaChe Used Loade ram
150

GJ
=
v
©
v
[
£
S
&
o
()
[
8
<
[
Y
&

00 N AN OO MONTEHOWUL NONDNOMONST 0! NOONDOUMONST 0L NOWMOIN

SN ANOMO ST NN O NN O N AN OO TN OWON0DNDNDO 4 d NMOMOMm T 1N O OIS

E e o A e H e H AN NN NN NN NN NN

128MB BrICkCaChe = Used Loaded Frame

Figure 7.23. Percentages of pages loaded and used in the brick cache for each frame of a 16 second sequence
of exploration of the Mandelbulb scene on a GTX480.

7.5.3 Comparison with CPU-based transfers

One of the major differences of our approach compared with previous work is the streaming of the
data located in system memory in parallel directly from the GPU using kernel fetches (cf. GPU load
Producers presented in Section 7.4.3). Figure 7.24 compares the transfer speed we have been able
to achieve using our GPU-based method, with the speed obtained using the CPU-based transfer ap-
proach used for instance in [GMAGO8]. The CPU-based approach issues multiple copy-to-texture
instructions (CUDA cudaMemcpyToArray instruction [NVI11a]), one for each brick to transfer. Fig-
ure 7.24(a) shows the transfer rate in MB/s of the two approaches, depending on the number of bricks
and with 183 voxel brick resolution, and Figure 7.24(a) shows the same comparison with 66> voxel
brick resolution. We clearly see that our approach is increasingly faster than the CPU approach as
much as the number of transfered bricks increases. With around 480 bricks of 18 voxels and 137
bricks of 66> voxels, we reach a little bit more than half the theoretical bandwidth of 8GB/s of the
PCIExpress bus (cf. Section 1.3), which is a very good performance. However, the CPU approach
can not do better than 41—0 of the theoretical bus bandwidth for 183 bricks, and % of this bandwidth with
66° bricks.

154

5000,00 4394,98 6000,00
4500,00 4114,56 4932,04 4733,12
4000,00 5000,00
2 350000 =
Q ’ 2 4000,00
% 3000,00 2692,56 %
% 2500,00 & 3000,00 2555,99
& 200000 g 1281,62
7 ,
§ 1500,00 g 2000,00 1353,57 1340,09 1398,64 1319,99
= 728,82 = * ¢ ==
*~ 1000,00 1000,00
500,00 20(129 1951,99 20(1,41 1951,62
0,00 s e e i 0,00
137 40 8 4
a8 172 16 Nu4m bricks 3 . Num bricks
183 bricks —4—MB/s CPU Copy MB/s Kernel Fetch 667 bricks =&—MB/s CPU Copy MB/s Kernel Fetch
(a) (b)

Figure 7.24. Comparison of the transfer rates (in MB/s) achieved with CPU-based copies and our GPU-based
streaming approach (kernel fetch), for 183 voxels bricks (a) and 663 voxels bricks (b).

7.5.4 Comparison with CPU-based LRU management

Another major difference of our approach compared with previous work is the management of the
cache done entirely on the GPU, and in particular the management of the LRU replacement policy. In
order to show the advantage of our method in terms of execution speed, we compared the cost of our
GPU-based LRU management with a CPU-based management similar to the one used in [GMAGOS].
Figure 7.25 shows the average time per frame in milliseconds taken by the two approaches, depending
on the size of the managed pool in MB, with 64B pages. We see that our approach performs increas-
ingly better than the CPU-based approach as the size of the cache, and thus the number of pages to
manage, increases. In this test we limited the maximum cache size to 64MB and our approach is 1.7x
to 27.5x faster than the CPU approach.

25,00
20,60

20,00

g 15,00
v
E 1000 7,05
5,10
5,00
0,75 045 0,36 190 o 21'30 968 0,33
0,00 — F—Y 5 g — %1%
64 32 16 8 4 2 1
Average LRU management cost CPU/GPU —8—GPU —A—CPU Poolsize (MB)

Figure 7.25. Comparison of the average time (in ms) for the management of the LRU replacement policy
between our GPU approach and a CPU approach, depending on the size of the cache (in MB) and with 64B
pages.

7.5.5 Out-of-core ray-tracing of triangle scenes

In order to demonstrate the genericity of our cache mechanism (Sec. 7.3), we used it to implement
an out-of-core renderer for large triangle scenes. This renderer is based on a BVH (Bounding Vol-
ume Hierarchy, [LGS09]) structure, instead of an octree, that stores sets of triangles in its leaves.
It is rendered on the GPU using a dedicated ray-tracer that traverses the BVH structure and renders
stored triangles. As for GigaVoxels, both the BVH space subdivision structure and the triangle data
are managed with our generic cache, inside a BVH node cache and a triangle cache. Triangles are
grouped in pages inside the triangle cache, and each leaf of the BVH can only reference one page of
triangles. Both BVH nodes and triangles are streamed using a dedicated GPU Producer from a pre-
computed structure stored in system memory. This rendering scheme was not particularly optimized

155

and our goal was not to contribute to the domain of out-of-core real-time ray-tracing of large triangle
meshes, but simply to demonstrate how our cache mechanism can adapt to different data structures
and representations.

Figure 7.26 shows screen-shots taken during the exploration of the 13M triangles Power Plant scene
rendered using our dedicated ray-tracer, from the BVH-based representation stored and managed in
video memory using our GPU cache. This dataset takes approximatively 512MB stored in system
memory and we allocated only SOMB of triangle cache in video memory in order to simulate a con-
strained memory environment. We get 15-30FPS on an NVIDIA GTX 280 during the exploration
of the scene, with the framerate varying per-frame in function of the amount of triangle data loaded
inside the cache.

Figure 7.26. Images of the Power Plant 13M triangles model rendered at 15-30FPS using a dedicated ray-tracer
and our GPU-based cache mechanism on a GTX280.

156 | chapter 7. Out-of-core data management

Part Il

Contributions: Applications of the
model

158

Direct applications

In this chapter, we present some interesting applications of our method to render specific effects that
are difficult to achieve with the classical triangle-based representation. In particular, we show how our
hierarchical data structure can be used to synthesize fractal geometry and create virtually infinite res-
olution procedural scenes in Section 8.1. In Section 8.2, we demonstrate how our caching scheme and
ray-based on-demand paging allows a very easy instancing of voxel objects in space, which was diffi-
cult to achieve with previous approaches. Finally, in Section 8.3, we demonstrate how our voxel-based
pre-integrated cone tracing can be used to very efficiently render blurry effects such as soft-shadows
and depth-of-field.

8.1 Octree-based synthesis

Our pointer-based octree structure allows us to produce many in-
teresting scenarios. A first feature is the ability to implement in-
stancing of interior branches, as well as recursions. We can reuse
subtrees by making nodes share common sub-nodes. This can be
very advantageous if a model has repetitive structures and can sig-
nificantly reduce the necessary memory consumption. This kind of

. L. L. Figure 8.1. Instantiated octree.
octree instancing is illustrated in Figure 8.1.

The node pointers further allow us to create recursions in the graph. This is particularly interesting
in the context of fractal-like representations. The self-similarity is naturally handled and the resulting
volumes are virtually of an infinite resolution. Figure 8.2 shows an example of a Menger sponge
fractal. It is implemented using the generalization of our octree, an N>-tree node with N = 3 (see
Section 5.2). These two usages, instancing and recursivity, are also made available by our GPU cache
mechanism that correctly manages such cases.

Figure 8.2. Example of a Sierpinski sponge fractal fully implemented with recursivity in the octree. This
example is running around 70FPS. The bottom graph shows the only node recursively linked used in this case.

160

8.2 Voxel object instancing

Figure 8.3. Example of instancing of thousands of voxel trees in a forest scene rendered at 20-25FPS on a
GTX280.

Our ray-tracing framework is compatible with several voxel entities, or objects, present in the scene.
This can be either multiple different objects, each with its own octree structure and data producer and
stored in the same caches in video memory as we have seen in Section 7.4.1, or this can be the same
octree structure "instantiated" (ie. rendered) multiple times at different positions in the scene.

Such instantiation of the same octree structure in a scene is made possible by the autonomous traver-
sal of the structure by our ray-tracing algorithm (Sec. 6). During the rendering of each instance, the
required parts of the structure will be requested to the caches, depending on the distance to the viewer
and potential occlusions. Scaling, rotation and LODs are automatically handled and allow us to rep-
resent scenes with many complex objects at high framerates. Figures 8.3 and 8.4 show two examples
of such scenes.

Figure 8.4. Examples of free instancing of multiple GigaVoxels objects in space.

161

8.3 MipMap-based blur effects

Throughout this thesis we have shown that our hierarchical structure as well as our GPU paging mech-
anism are key elements to enable the processing of large data volumes, and thus to efficiently render
voxel-based pre-filtered geometrical representations.

As we have seen in Chapter 4, this pre-filtered (and pre-integrated) geometry representation allows us
to efficiently trace approximate cones using only one single ray in order to produce anti-aliased ren-
dering. Beyond simple anti-aliased rendering, cone tracing has many interesting applications. Even
though our solution is approximate and is based on some hypotheses on our scenes (cf. Section 4.4),
it provides a very fast way to estimate the total incoming energy scattered by the objects of a scene
and coming towards an arbitrary cone. While this approximation is not always precise, especially
with large cones, it has the great advantage of always providing smooth results, while multisampling
schemes are knows to generate noisy results.

In this section, we detail how our voxel cone tracing can be used to quickly estimate soft shadows
as well as depth-of-field effects. Rendering such effects is very challenging with triangular models.
More generally with B-reps, rendering blurry effects happens to be more costly in terms of com-
putation than doing sharp rendering, due to the multisampling scheme that needs to be employed.
Interestingly with our approach, rendering blurry effects uses lower resolution volume data (thanks to
the LOD), and thus happens to be faster than sharp rendering.

8.3.1 Soft shadows

Shadows are an important cue that help us to evaluate scene configurations and spatial relations. Fur-
ther, it is a key element to make images look realistic. So far, this point has not been addressed in our
current pipeline. Here, we will explain how our rendering engine can be used to obtain convincing
shadow effects for gigantic volumetric models.

Figure 8.5. Example of soft shadows rendered by launching secondary rays and using the volume MIP-
mapping mechanism to approximate integration over the light source surface. Interestingly, the blurrier the
shadows, the cheaper they are to compute.

Before tackling soft shadows, let us take a look at the case of a point light source. Given a surface
point P in our volumetric scene, or volumetric model, we want to determine how much light reaches
P. This basically amounts to shooting a ray from P towards the light source. If the opacity value
of the ray saturates on the way to the light, P lies in shadow. If the ray traversed semi-transparent
materials without saturating, the accumulated opacity value gives us the intensity of the soft shadow.
It should be pointed out that this traversal can be used to also accumulate colors to naturally handle
colored shadows.

162

In practice, we do not really have an impact point. Rather, due to our traversal for primary-rays in-
spired by cone tracing, we obtain an impact volume at the intersection between the cone emitted from
the eye and the object. To take this into account, we should not shoot a simple ray toward the light,
but again an entire cone. This light cone’s apex will lie on the point light source itself and its radius is
defined by the size of the impact volume (see Figure 8.6).

To sample the light cone, we perform a similar traversal as for the view, following our voxel cone
tracing model presented in Section 4.2. Only this time, the LOD is defined by the light cone instead
of the pixel cone radius. During this traversal we accumulate the opacity values. Once the value
saturates, the ray traversal can be stopped.

Figure 8.6. Left: illustration of shadow computation for a point light source, taking impact volume into ac-
count. Right: soft shadows computation for a surface light source.

To approximate soft shadows, we compute a filtered shadow value at the impact volume V. If V were
a point, a cone instead of a simple shadow ray would need to be tested for intersection. This cone
would be defined by the light source and the impact point. Consequently, a possible approximation
for an impact volume V is to define a cone that contains not only the light, but also V (see Figure 8.6).
Again, we accumulate the volume values. The resulting value reflects how much the light reaching V
is occluded.

This coarse approximation is extremely efficient, delivers pretty-good shadows and is fully compatible
with our cache mechanism presented in Section 7.

Figure 8.7. Examples of high resolution voxel objects efficiently rendered in real-time with soft shadows using
our approach.

163

8.3.2 Depth-of-field

Another very important element for realistic images is the depth-of-field lens blur, present in any
camera, as well as our own optical system. It results from the fact that the aperture of a real pinhole
camera is actually finite. Consequently, unlike standard OpenGL/DirectX rendering, each image point
reflects a set of rays, passing through the aperture and the lens. The lens can only focus this set of
rays on a single point for elements situated on the focal plane. As illustrated in Figure 8.9 this set of
rays can again be grouped in some form of double cone, the lens cone. This double-cone defines the
LOD that should be used along the rays launched for all pixels of the screen, in order to approximate
this integral over the camera lens.

Figure 8.8. Example of Depth-Of-Field rendering with GigaVoxels thanks to the volume MIP-mapping. Once
again, the blurrier are the objects and the cheaper it is to render.

Paradoxically with our approach, the more blur is introduced, the faster the rendering becomes and
the less memory is necessary to represent the scene. This is very different for triangle-based solutions,
where depth-of-field, and even approximations, are extremely costly processes. In games, depth-of-
field is usually performed as a post-process by filtering the resulting image with spatially varying
kernels. One problem of such a filtering process is the lack of hidden geometry. In our volumetric
representation, hidden geometry is integrated as much as necessary to produce the final image. The
algorithm does not need to be adapted to consider the different reasons for why volume information
is needed. Disocclusion due to depth of field, transparency and shadows are all handled in the same
manner.

In fact, any kind of secondary ray is supported, showing the versatility of our framework. In addi-
tion, these secondary rays are perfectly handled by our caching mechanism, thanks to our per-ray data
request mechanism.

Figure 8.9. Illustration of the cone tracing used to approximate Depth-Of-Field effect with a single ray.

164 \ chapter 8. Direct applications

Interactive Indirect lllumination
Using Voxel Cone Tracing

Figure 9.1. Real-time indirect illumination (25-70 fps on a GTX480): Our approach supports diffuse and
glossy light bounces on complex scenes. We rely on a voxel-based hierarchical structure to ensure efficient
integration of 2-bounce illumination. (right scene courtesy of G. M. Leal Liaguno).

Indirect illumination is an important element of realistic image synthesis, but its computation is ex-
pensive and highly dependent on the complexity of the scene and of the BRDF of the surfaces in-
volved. While off-line computation and pre-baking can be acceptable for some cases, many applica-
tions (games, simulators, etc.) require real-time or interactive approaches to evaluate indirect illumi-
nation.

We present a novel algorithm to compute indirect lighting in real-time that avoids costly precompu-
tation steps and is not restricted to low frequency illumination. It is based on our hierarchical voxel
octree representation generated and updated on-the-fly from a regular scene mesh coupled with our
approximate voxel cone tracing (Chap. 4) that allows a fast estimation of the visibility and incoming
energy. Our approach can manage two light bounces for both Lambertian and Glossy materials at
interactive frame rates (25-70FPS). It exhibits an almost scene-independent performance thanks to an
interactive octree voxelization scheme, hereby allowing for complex scenes and dynamic content.

In contrast to the rendering usages we presented previously in this thesis, in this application our voxel
representation is not used to render primary rays, but instead is employed as a proxy to compute in-
direct illumination. The approach presented in this chapter does not rely on our out-of-core scheme
presented in Chapter 7, but we see its integration as an interesting direction for future work, as it could
highly benefit from our ray-based demand paging scheme.

166

9.1 Introduction

There is no doubt that indirect illumination drastically improves the realism of a rendered scene, but
generally comes at a significant cost because complex scenes are challenging to illuminate, especially
in the presence of glossy reflections. Global illumination is computationally expensive for several rea-
sons. It requires computing visibility between arbitrary points in the 3D scene, which is difficult with
rasterization based rendering. Second, it requires integrating lighting information over a large number
of directions for each shaded point. Nowadays, with complexity of the rendering content approaching
millions of triangles, even in games, computing indirect illumination in real-time on such scenes is
a major challenge with high industrial impact. Due to real-time constraints, off-line algorithms used
by the special-effect industry are not suitable, and dedicated fast approximate and adaptive solutions
are required. Relying on precomputed illumination is very limiting because common effects such as
dynamic light sources and glossy materials are rarely handled.

In this chapter, we present a novel algorithm that avoids costly precomputation steps, and is not re-
stricted to low frequency illumination. It exhibits an almost scene-independent performance and is
suitable to be extended for out-of-core rendering, therefore allowing for arbitrarily complex scenes.
We avoid using the actual scene geometric mesh and can achieve indirect illumination in arbitrary
scenes at an almost geometry-independent cost. We reach real-time frame rates even for highly de-
tailed environments and produce plausible indirect illumination (see Teaser).

The core of our approach is built upon our pre-filtered hierarchical voxel representation of the scene
geometry presented in chapter 4. For efficiency, this representation is stored on the GPU in the form
of a dynamic sparse voxel octree [CNLE09, LK10] (Chap. 5) generated from the triangle meshes.
We handle fully dynamic scenes, thanks to a new real-time mesh voxelization and octree building and
filtering algorithm that efficiently exploits the GPU rasterization pipeline (Sec. 9.4.2). This octree rep-
resentation is built once for the static part of the scene, and is then updated interactively with moving
objects or dynamic modifications on the environment (like breaking a wall or opening a door).

We rely on this pre-filtered representation to quickly estimate visibility and integrate incoming indi-
rect energy splatted in the structure from the light sources using a new approximate voxel cone tracing.
The main contributions of our work are the following:

o A real-time algorithm for indirect illumination;
¢ An adaptive scene representation independent of the mesh complexity;

o An efficient splatting scheme to inject and filter incoming radiance information (energy + di-
rection) into our voxel structure;

o A fast GPU-based mesh voxelisation and octree building algorithm.

9.2 Previous Work

There are well established off-line solutions for accurate global-illumination computation such as path
tracing [Kaj86], or photon mapping [JenO1]. These have been extended with optimizations that often
exploit geometric simplifications [T1.04, CB04b], or hierarchical scene structures, but do not achieve
real-time performance. Fast, but memory-intensive relighting for static scenes is possible [LZT*08],
but involves a slow preprocessing step. Anti-radiance [DSDDO07, DKTS07] allows us to deal with vis-
ibility indirectly, by shooting negative light, and reaches interactive rates for a few thousand triangles.

To achieve higher frame rates, the light transport is often discretized. Particularly, the concept of
VPLs [Kel97] is interesting, where the bounced direct light is computed via a set of virtual point

167

lights. For each such VPL, a shadow map is computed, which is often costly. Laine et al. [LSK™07]
proposed to reuse the shadow maps in static scenes. While this approach is very elegant, fast light
movement and complex scene geometry can affect the reuse ratio. Walter et al. [WFA™05] use light-
cuts to cluster VPLs hierarchically for each pixel, while Hasan et al. [HPB07] push this idea further to
include coarsely sampled visibility relationships. In both cases, a costly computation of shadow maps
cannot be avoided and does not result in real-time performance. ISM [RGK"08] and Microrender-
ing [REG"09] reach real-time performance by using a point-based scene approximation to accelerate
the rendering into the VPL frusta, but cannot easily ensure sufficient precision for nearby geometry.
Our approach represents direct illumination hierarchically and uses cone tracing that replaces shadow
map computations to accelerate the image generation. The most efficient real-time solutions avail-
able today work in the image-space of the current view, but ignore off-screen information [NSW09].
Our approach is less efficient than such solutions, but does not require similarly strong approxima-
tions. In particular, we achieve high precision near the viewer which is important for good surface
perception [AFO05].

Our work derives a hierarchical representation of the scene that produces a regular structure to facili-
tate light transfer and achieve real-time performance, similar in spirit to Kaplanyan et al. [KD10], who
implement diffuse indirect illumination using a diffusion process in a set of nested regular voxel grids.
While relatively fast, this approach suffers from a lack of precision coming from the relatively low
resolution of the voxel grids that can be used. This resolution is limited by the cost of the diffusion
process as well as the memory occupancy. Instead of relying on a diffusion process, our approach
relies on a ray-tracing approach to collect the radiance stored in the structure. This approach allows us
to use a sparse storage of the incoming radiance and scene occlusion information, while maintaining
high precision. This lack of precision limits Kaplanyan’s approach to diffuse indirect illumination,
while our approach can manage both diffuse and specular indirect lighting.

9.3 Algorithm overview

Our approach is based on a three-step algorithm as detailed in Figure 9.2.

We first inject incoming radiance (energy and direction) from dynamic

light sources into the leaves of the sparse voxel octree hierarchy. This is

done by rasterizing the scene from all light sources and splatting a photon

for each visible surface fragment. In a second step, we filter the incoming

radiance values in the higher levels of the octree (mipmap). We rely on a

compact Gaussian-Lobe representation to store the filtered distribution of

incoming light directions. This is done efficiently in parallel by relying

on screen-space quad-tree analysis. Our voxel filtering scheme also treats the NDF and the BRDF
in a view-dependent way. Finally, we render the scene from the camera. For each visible surface
fragment, we combine the direct and indirect illumination. We employ an approximate cone tracing
to perform a final gathering [Jen96], sending out a few cones over the hemisphere to collect illumi-
nation distributed in the octree. Typically for Phong-like BRDF, a few large cones (~5) estimate the
diffuse energy coming from the scene, while a tight cone in the reflected direction with respect to the
viewpoint captures the specular component. The aperture of the specular cone is derived from the
specular exponent of the material, allowing us to efficiently compute glossy reflections.

168

Figure 9.2. Left: Illustration of the three steps of our real-time indirect lighting algorithm. Right: Display of
the sparse voxel octree structure storing geometry and direct lighting information.

9.4 Our hierarchical voxel structure

The core of our approach is built around our pre-filtered hierarchical voxel version of the scene ge-
ometry we described in Chapter 4. For efficiency, this representation is stored in the form of a sparse
voxel octree as described in Chapter 5.

Having a hierarchical structure, allows us to avoid using the actual scene geometric mesh and can
achieve indirect illumination in arbitrary scenes at an almost geometry-independent cost. It is possible
to improve precision near the observer and to abstract energy and occupancy information farther away.
We reach real-time frame rates even for highly detailed environments and produce plausible indirect
illumination. We can choose a scene resolution suitable to the viewing and lighting configuration,
without missing information like light undersampling or geometric LOD would. Thus, our approach
always ensure smooth result, in contrary to path-tracing or photon mapping approaches [Jen96].

9.4.1 Structure description

Our sparse voxel octree is a very compact pointer-based structure with assciated bricks described in
Chapter 5. Octree nodes are stored in linear GPU memory and nodes are grouped into 2 X 2 X 2
tiles. Since we use a brick instead of a single value per node we can use hardware texture trilinear
interpolation to interpolate values. This structure allows us to query filtered scene information (en-
ergy intensity and direction, occlusion, local normal distribution functions - NDFs) with increasing
precision by traversing the tree hierarchy. This property will allow us to achieve adaptivity and handle
large and complex scenes.

As we have seen in Chapters 5 and 6, using small bricks node brick
in the sparse octree is more efficient both in terms of stor- 0 T o o o
age and in terms of rendering speed. Thus, we rely on the ‘
corner-centered voxel localization configuration detailed in =~ Q----Q-ronn
Section 5.1.4 with 3 x 3 x 3 voxel bricks. We assume that
the voxel centers are located at the node corners and not at
the node centers (Fig. left). This ensure that interpolated ¢ yoxel center
values can always be computed inside a brick covering a

set of 2 X 2 X 2 nodes.

The only difference with the structure presented in Chapter 5 is that we add neighbor pointers to the
nodes of our structure. These will enable us to quickly visit spatially neighboring nodes during the

169

interactive voxelization of dynamic objects. We will see that these links are particularly important to
efficiently distribute the direct illumination over all levels of the tree.

9.4.2 Interactive voxel hierarchy construction

Our sparse hierarchical voxel structure will replace the actual scene in our light transport computa-
tions. The voxel data representation (see above) allows interpolation and filtering computations to be
simple.

In order to quickly voxelize an arbitrary triangle-based scene, we propose a new real-time voxeliza-
tion approach that efficiently exploits the GPU rasterization pipeline in order to build our sparse octree
structure and filter geometrical information inside it. This voxelization must be fast enough to be per-
formed at each rendering frame, allowing for fully dynamic scenes. In order to scale to very-large
scenes, our approach avoids relying on an intermediate full regular grid to build the structure and
instead directly constructs the octree. To speed-up this process, we observed that in real video-game
situations, large parts of the environment are usually static or updated punctually on user-interaction.
This allows us to voxelize these parts once in the octree, and to update them only when necessary,
while full dynamic objects are re-voxelized at each frame. Both semi-static and fully dynamic objects
are stored in the same octree structure, allowing an easy traversal and a correct filtering of both types
of objects together. A timestamp mechanism is used to differentiate both types, in order to prevent
semi-static parts of the scene to get destructed at each frame. Our structure construction algorithm
performs in two steps: octree building and MIP-mapping of the values.

Figure 9.3. Left: Display of the sparse voxel octree structure storing filtered geometry and direct lighting in-
formation for a static environment. Right: Display of the octree with both the static environment and a dynamic
object with the structure updated in real-time.

Octree building

We first create the octree structure itself by using the GPU rasterization pipeline. To do so, we rasterize
the mesh three times, along the three main axes of the scene, with a viewport resolution corresponding
to the resolution of the maximum level of subdivision of the octree (typically 512 x 512 pixels for a
5123 octree). By disabling the depth test to prevent-early culling, this allows us to generate at least one
fragment shader thread for each part of the surface that will fall into a given leaf of the tree (and needs
to write surface attributes, typically texture color, normal and material information). These threads
traverse the octree from top-to-bottom and directly subdivide it when needed during the traversal, in
order to reach the correct leaf where they can write their values.

Whenever a node needs to be subdivided, a set of 2 X 2 X 2 sub-nodes is "allocated" inside a global
shared node buffer pre-allocated in video memory. The address of this set of new sub-nodes is written
inside the "child" pointer of the subdivided node and the thread continue its descent down to the leaf,
creating each successive new required set of nodes. These allocations are made through the atomic

170

increment of a global shared counter indicating the next available page of nodes in the shared node
buffer. Since we are in a massively parallel environment, multiple threads can request the subdivision
of the same node at the same time, and so could generate an incoherent structure. To prevent such
a conflict, we rely on a per-node mutex that makes it possible to perform the subdivision only in the
first thread getting it. Unfortunately, it is not possible to put the other threads to sleep while waiting
for the first thread to finish the subdivision.

In order to avoid an active waiting loop that would be too expensive, we implemented a global thread
list where interrupted threads put themselves for a deferred execution. At the end of the rasterization
pass, deferred threads are re-run (in a vertex shader) to allow them to write their values in the tree.
Such a deferred pass can possibly generate new deferred threads and is re-executed as long as the
global thread list is not empty. Values in the leaves are written directly inside the brick associated
with the nodes, and bricks are allocated similarly to the nodes inside a shared brick buffer.

In our OpenGL implementation this scheme is made possible by the new NV_shader_buffer_load
and NV_shader_buffer_store extensions that provide CUDA-like video memory pointers as well
as atomic operations directly inside OpenGL shaders.

MIP-mapping

Once the octree structure is built and the surface values written in-
side the leaves, these values must be MIP-mapped and filtered in the
inner nodes of the tree (following our approach described in chap-
ter 4). This is simply done in n — 1 steps for an octree of n levels.

At each step, threads compute the filtered values coming from the
bricks in the sub nodes of each node of the current level. To compute
a new filtered octree level, the algorithm averages values from the
previous level. Since we rely on vertex-centered voxels as described

weights
01/16

o1/8
@1/4

in Section 9.4.1, each node contains a 33-voxel brick, whose bound-
aries reappear in neighboring bricks. Consequently, when comput-
ing the filtered data, one has to weight each voxel with the inverse of
its multiplicity (Fig. left). In practice, this results in a 3*-Gaussian
weighting kernel which, for our case, is an optimal reconstruction
filter [FP024a].

Lower-level vox-
els surround higher-level voxels.
During filtering, shared voxels
are “evenly distributed” resulting
in Gaussian weights.

Figure 9.4.

9.4.3 Voxel representation

Each voxel at a given LOD must represent the light behavior of the lower levels - and thus, of the whole
scene span it represents. For this, we rely entirely on our pre-filtered geometry model described in
Chapter 4 to model the directional information with distributions that describe the underlying geome-
try. We add the filtered incoming radiance to this model, which will be injected into the representation
by all direct light sources. We also store and filter the distribution of all incoming light directions, in
order to allow the computation of indirect specularities.

Since storing arbitrary distributions would be too memory-intensive, we choose to store only isotropic
Gaussian lobes characterized by an average vector D and a standard deviation o (as described in Sec-
tion 4.5). Following [Tok05], to ease the interpolation, the variance is encoded via the norm |D| such
that o2 = %. In Section 9.6, we will detail how to calculate light interaction with such a data
representation.

171

9.5 Ambient Occlusion

To illustrate the use of our approximate cone tracing (Sec. 4.2

in this context and to facilitate the understanding of our indi-

rect illumination algorithm, we will first present a simpler case:

an ambient occlusion estimation (AO), which can be seen as

an accessibility value [Mil94]. The ambient occlusion A(p) at a

surface point p is defined as the visibility integral over the hemi-

sphere Q (above the surface) with respect to the projected solid

?lngle. l?r.e(fi.sely, A(p.) = 717[9 Vip, Q) (cosa))da),. vilher'e Vip, a.)) Figure 9.5. Ambient Occlusion is
is the visibility function that is zero if the ray originating at sin omputed via a set of cones launched
direction w intersects the scene, otherwise it is one. For practi- qver the hemisphere associated with a
cal uses (typically, indoor scenes which have no open sky) the given surface.

visibility is limited to a distance since the environment walls play the role of ambient diffusors. Hence,
we weight occlusion a by a function f(r) which decays with the distance (in our implementation we
use m). The modified occlusion is af(p + rw) := f(ra(p + rﬁ).

To compute the integral A(p) efficiently, we observe that the hemisphere can be partitioned into a sum
of integrals: A(p) = %,Zf\i Ve(p,), where Ve(p, Q;) = fQ,— V,6(cos6)db. For a regular partition,
each Ve(p, Q;) resembles a cone. If we factor the cosine out of the Vc integral (the approximation
is coarse mainly for large or grazing cones). We can then approximate their contribution with our
voxel-based cone tracing, as illustrated in Figure 9.5. The weighted visibility integral V(p, w) is
obtained by accumulating the occlusion information only, accounting for the weight f(r). Summing
up the contributions of all cones results in our approximation of the AO term.

Final Rendering

To perform the rendering of a scene mesh with AO effects, we evaluate the cone tracing approximation
in the fragment shader. For efficiency, we make use of deferred shading [ST90] to avoid evaluating
the computation for hidden geometry. I.e., we render the world position and surface normal pixels of
an image from the current point of view. The AO computation is then executed on each pixel, using
the underlying normal and position.

9.6 Voxel Shading

For indirect illumination, we will be interested not only in occlusion, but need to compute the shading
of a voxel. For this shading, we rely on the pre-filtered representation we described in Section 4.5.
The difference in our case is that we need to add an incoming radiance information to this pre-filtered
representation. This incoming radiance will be injected in the structure from the light sources, and
collected during rendering using our approximate cone tracing (cf. Section 9.7).

As shown in [Fou92b, HSRGO07], shading computations can conveniently be translated into convolu-
tions, provided that the elements are decomposed into lobe shapes. In our case, we have to convolve
the BRDF, the NDF, the span of the view cone as well as the incoming light directions, all except the
BRDF already being represented as Gaussian lobes in our structure. We consider the Phong BRDF,
i.e., a large diffuse lobe and a specular lobe which can be expressed as Gaussian lobes. Nonetheless,
our lighting scheme could be easily extended to any lobe-mixture BRDF.

172

9.7 Indirect lllumination

To compute indirect illumination in the presence of a point light
is more involved than AO. We use a two-step approach.

First, we capture the incoming radiance from a light source in
the leaves of our scene representation. Storing incoming radi-
ance, not outgoing, will allow us to simulate glossy surfaces.
We filter and distribute the incoming radiance over all levels of
our octree.

Finally, we perform approximate cone tracing to simulate the
light transport. Writing the incoming radiance in the octree
structure is complex, therefore we will, for the moment, assume Figure 9.6. We determine indirect
that it is already present in our octree structure, before detailing jighting via a set of cones, with shading
this process. computed with our distribution model.

9.7.1 Two-bounce indirect illumination

Our solution works for low energy - low frequency and high energy - high frequency components of
arbitrary material BRDFs, although we will focus our description on a Phong BRDF. The algorithm
is similar to the one described in Section 9.5 for AO. We use deferred shading to determine for which
surface points we need to compute the indirect illumination. At each such location, we perform a
final gathering by sending out several cones to query the illumination that is distributed in the octree.
Typically, for a Phong material (Fig. 9.6, right), a few large cones (typically five) estimate the diffuse
energy coming from the scene, while a tight cone in the reflected direction with respect to the view-
point captures the specular component. The aperture of the specular cone is derived from the specular
exponent of the material, allowing us to compute glossy reflections.

9.7.2 Capturing direct lllumination

To complete our indirect-illumination algorithm, we finally need to describe how to store incoming
radiance. Our approach is inspired by reflective shadow maps [DS05]. We render the scene from the
light’s view using standard rasterization, but output a world position. Basically, each pixel represents a
photon that we want to bounce in the scene. We call this map the light-view map. In the following, we
want to store these photons in the octree representation. Precisely, we want to store them as a direc-
tion distribution and an energy proportional to the subtended solid angle of the pixel as seen from the
light. Because the light-view map’s resolution is usually higher than the lowest level of the voxel grid,
we can assume that we can splat photons directly into leaf nodes of our octree without introducing
gaps. Furthermore, photons can always be placed at the finest level of our voxel structure because they
are stored at the surface, and we only collapsed empty voxels to produce our sparse representation.
To splat the photons, we basically use a fragment shader with one thread per light-view-map pixel.
Because several photons might end up in the same voxel, we need to rely on an atomic add.

Although the process sounds simple, it is more involved than one might think and there are two hur-
dles to overcome. The first problem is that atomic add operations are currently only available for
integer textures. We can easily address this issue by using a 16bit normalized texture format, that
is denormalized when accessing the value later. The second difficulty is that voxels are repeated for
adjacent bricks. We mentioned in Section 9.4 that this redundancy is necessary for fast hardware-
supported filtering. While thread collisions are rare for the initial splat, we found that copying the

173

photon directly to all required locations in adjacent bricks leads to many collisions that affect per-
formance significantly. This parallel random scattering, further, results in bandwidth issues. A more
efficient transfer scheme is needed.

Value transfer 1) Add left values to right Distribution over levels
to neighboring
bricks (x-axis) ? 2 f
— 2
neighboring
bricks
initially with I
incoherent -
values 3 2 3

Figure 9.7. Left: During photon splatting, each photon is only stored in one voxel, therefore, inconsistencies
appear for duplicated voxels of neighboring nodes. An addition and copy along each axis corrects this issue.
Right: To filter values from a lower to a higher level, three passes are applied (numbers). The threads sum up
lower-level voxels (all around the indicated octants) and store them in the higher level.

Value transfer to neighboring bricks In order to simplify the explanation, let’s consider that our
octree is complete, so that we can then launch one thread per leaf node.

We will perform six passes, two for each axis (X, y, z). In the first x-axis pass (Fig. 9.7, only left),
each thread will add voxel data from the current node to to the corresponding voxels of the brick to its
right. In practice, this means that three values per thread are added. The next pass for the x-axis will
transfers data from the right (where we now have the sum) to the left by copying the values. After
this step, values along the x-axis are coherent and correctly distributed. Repeating the same process
for the y and z-axis ensures that all voxels have been correctly updated. The approach is very efficient
because the neighbor pointers allow us to quickly access neighboring nodes and thread collisions are
avoided. In fact, not even atomic operations are needed.

Distribution over levels At this point we have coherent information on the lowest level of the
octree and the next step is to filter the values and store the result in the higher levels. A simple so-
lution would be to launch one thread on each voxel of the higher level and fetch data from the lower
level. Nonetheless, this has an important disadvantage: For shared voxels, the same computations are
performed many (up to eight) times. Also, the computation cost of the threads differs depending on
the processed voxel leading to an unbalanced scheduling.

Our solution is to perform three separate passes in which all threads have roughly the same cost
(Fig. 9.7, right). The idea is to only partially compute the filtered results and use the previously-
presented transfer between bricks to complete the result.

The first pass computes the center voxel using the involved 27 voxel values on the lower level (indi-
cated by the yellow octants in Fig. 9.7). The second pass computes half of the filtered response for the
voxels situated in the center of the node’s faces (blue). Because only half the value is computed, only
18 voxel values are involved. Finally, the third pass launches threads for the corner voxels (green) that
compute a partial filtering of voxels from a single octant.

After these passes, the higher-level voxels are in a similar situation as were the leaves after the initial
photon splatting: octree vertices might only contain a part of the result, but summing values across
bricks, gives the desired result. Consequently, it is enough to apply the previously-presented transfer
step to finalize the filtering.

174

Sparse octree So far we assumed that the octree is complete, but in reality, our structure is sparse.
Furthermore, the previously-described solution consumes many resources: During the filtering, we
launched threads for all nodes, even those that did not contain any photon. Consequently, often fil-
tering was just applied on zero values. This is crucial, as direct light often only affects a part of the
scene. Here, we will propose a better control of the thread calls and at the same time deal with an
incomplete/sparse octree.

To avoid filtering zero values, one could launch a thread per light-view-map pixel, find the corre-
sponding leaf node and then walk up in the structure to the level on which the filtering should be
applied and execute it. The result would be correct because our filtering was carefully designed to
not introduce read-write conflicts (one thread simply overwrites the other’s result). Unfortunately,
whenever threads end up in the same node, work is performed multiple times. We want to reduce this
overhead, but detecting an optimal thread set is very costly in practice. Our solution is approximate,
but very efficient and delivers a good tradeoff.

scene
octree

node map

)
KUN
(2 levels) O s :‘

s

~
.:
a®

NZTT I

RAZA 5 3
executed RS { no photon,
threads o771 T\ ", no filtering +*

av2, \‘“I"’I e ‘?"
RUA o .
KRS s 2

" :‘ *", o 0>

unncessary
threads
(detected &
terminated)

‘||=l'

L

RZITI TN

Figure 9.8. The node map (left) is constructed from the light-view map. It is hierarchical (like a MipMap)
and has several levels (large circles represent the next level). On the lowest level, a pixel contains the index of
the node in which the corresponding photon is located. Higher levels contain the common lowest ancestor of
all underlying nodes. This structure allows us to avoid launching too many threads during the filtering of the
photons (dashed threads are stopped). Further, by building upon the light-view map, nodes that did not receive
photons will also not receive threads.

Our idea is to rely on a 2D node map derived from the light-view map. It resembles a Mipmap and
reduces its resolution at each level. The pixels of the lowest node-map level store the indices of the
3D leaf nodes containing the corresponding photon of the light-view map. Higher-level node-map
pixels store the index of the lowest common ancestor node for the preceding nodes of the previous
level (Fig.9.8).

We still launch one thread per pixel of the lowest node-map. But when a thread moves up from level
i — 1 to the next, it first looks up its corresponding ancestor node index in the i level of the node map
that is stored in some pixel p. Let py, ..., p3 be the pixels in the (i — 1) level of the node map, that
were fused into p. If the ancestor node in p is below or on the i level of the octree, we can deduce
that all threads that passed through py, ..., p3 will afterwards end up in the same node. Therefore,
we would like to terminate all threads except one, but this is hard to achieve. To stop at least many
unnecessary threads, we will employ a heuristic process and stop all those threads that did not traverse
po (in practice, this is the top-left pixel). Fig.9.8 illustrates with dashed lines the node where threads
are stopped when they pass.

This strategy is quite successful and we obtain a > 2 speedup compared to not using our heuristic to
terminate threads. Further, our filtering performs generally much faster than the naive implementation
that filters all nodes. Exact timings for the latter are difficult to provide because we only filter where
we find photons and so it depends highly on the scene configuration.

175

9.8 Results and discussion

Figure 9.9. Examples of real-time rendering (25-30FPS) of two bounds indirect illumination with a fully
animated object (hand) voxelized interactively inside our octree structure.

We implemented our approach on a GTX 480 system with an Intel Core 2 Duo E6850 CPU. Our
solution delivers interactive to real-time frame rates on various complex scenes with both indirect
diffuse and specular effects, as shown in Figures 9.9 and 9.13, and as can be seen in the online video
(http://artis.imag. fr/Membres/Cyril.Crassin/PG2011/PG2011.mov).

Table 9.1 Timings in ms (for a 5122 image) of each individual effect (Mesh rasterisation, Direct light-
ing, Indirect diffuse, Total direct+indirect diffuse, indirect specular, direct+indirect diffuse+indirect
specular) on the Sponza scene alone using 3 diffuse cones and a 10°specular cone aperture

Steps || Rast. | Dir. | Dif. || Dir+dif. || Spec. || Total
Times || 1.0 20 | 7.8 || 142 8.0 33.0

Table 9.1 shows the timing of each individual effect that can achieve our approach for the Sponza
scene (Fig. 9.13, 280K triangles) with a 9 level octree (5123 virtual resolution). In addition to these
costs, the interactive update of the sparse octree structure for dynamic objects (in our case the Wald’s
hand 16K triangles mesh) takes approximatively 5.5ms per frame. On the Sponza scene, that gives an
average frame rate of 30FPS with no specular cone traced, and 20FPS with one specular cone. The
pre-process for the creation of the octree for the static environment takes approximatively 280ms.

Figure 9.10. Image quality and performance comparison between [KD10] (left, 27FPS) and our approach
(right, 31FPS).

We compared our approach to one of the most closely related real-time solution that is [KD10].
In all situations, our solution achieves higher visual quality (Fig.9.10) and maintains better perfor-

http://artis.imag.fr/Membres/Cyril.Crassin/PG2011/PG2011.mov

176

mance. Our approach can capture much more precise indirect illumination even far from the observer,
while [KD10] nested grids representation prevents it.

Figure 9.11. Real-time ambient occlusion rendered in real-time (70-150FPS) with our approach.

Figure 9.11 shows results we got with the rendering of ambient occlusion with our approach. We
capture a lot more detail than SSAO (Screen Space Ambient Occlusion [Mit07]) approaches, and our
approach performs especially better when some regions occluded on the screen produce high amounts
of occlusion. Timings for ambient occlusion computations are shown in Table 9.2 and a comparison
with a ground truth ray-traced with OptiX [NVI11c] is presented in Figure 9.8.

Figure 9.12. Comparison with ground through for ambient occlusion computation. Our (153FPS) vs. reference
(OptiX, 0.1FPS)

Table 9.2 Timings (Full rendering 5122) in ms for the Sponza scene of the ambient occlusion compu-
tation for 3 cones and various cone apertures.

Cone aperture (deg) | 10 20 | 30 | 60
AO | 16.6 | 9.0 | 6.5 | 3.9

One critical point of our solution is the memory consumption that can be very high even with our
sparse structure, especially due to the support for indirect specularity (that requires the storage of more
information per-voxel). In practice, we allocate roughly 512MB on the GPU, however, this is lower
than in [KD10] when trying to achieve comparable visual quality. As for many real-time approaches,
our solution exhibits differences in comparison with a reference solution, especially on high-frequency
details. Our view-dependent refinement and approximate cone-tracing distributes more precision near
to the observer, but this can be a disadvantage for particular configurations in glossy scenes. For in-
stance, precise caustic effects would be difficult to capture. However, this limitation applies to any
existing real-time solution to a similar extent and we propose one of the only solutions that is able to
capture indirect specularities in real-time.

177

Figure 9.13. Our method supports diffuse indirect lighting as well as glossy reflections in real-time.

9.9 Conclusion

We presented a novel real-time global illumination algorithm. Using adaptive representations, we
are able to compute approximate two-bound indirect lighting in complex dynamic scenes. We also
proposed a new real-time approach for the voxelization and the pre-filtering of dynamic objects, as
well as the interactive update of an octree structure. Our solution supports indirect diffuse as well
specular illumination. Quality-wise, it outperforms existing competitors due to our approximate cone
tracing. It scales well when trading off quality against performance and could integrate seamlessly
into out-of-core rendering systems as the one presented Chapter 7. In the future, we want to work on
the integration of our application controlled paging system in order to improve the achievable preci-
sion and to allow indirect illumination computation on very large scenes. One of the difficulties will
be to mix on-demand loading and caching of static parts of the scene, with the interactive voxelization
of dynamic objects.

Figure 9.14. The SanMiguel test scene with (1)Direct lighting only (2)Indirect diffuse only (3)Indirect diffuse
and specular (4)Ambient occlusion only

178 | chapter 9. Interactive Indirect llumination
Using Voxel Cone Tracing

Part Il

Conclusion

180

Conclusions and perspectives

Summary of contributions

In this thesis, we have proposed several solutions in order to unlock the usage of very large voxel
representations in real-time applications as a way to render large and detailed scenes, by relying on an
appearance preserving pre-filtered geometry representation.

We proposed a model for representing and pre-filtering geometry inside a voxel-based 3D MIP-map
pyramid. From this, we built a pre-integrated cone tracing algorithm allowing very fast alias-free
rendering. This voxel-based cone tracing allows us to efficiently approximate visibility and lighting
integration inside a cone footprint. Moreover, we have demonstrated how to deal efficiently with the
main problem of voxel representations: the huge memory consumption. In order to bring memory-
intensive voxel representations as a standard GPU primitive, we proposed a new rendering pipeline
for high-performance rendering of large and detailed volumetric objects and scenes on the GPU.

Our pipeline is centered around a new sparse octree data structure providing a compact storage and
an efficient access and update to the pre-filtered voxel representation. This structure is used by a
fast GPU rendering algorithm based on ray-casting, that provides an adaptive multiresolution render-
ing approach. This makes the rendering of voxel-based scenes independent of the complexity of the
underlining geometry, providing a fully scalable way to render very complex scenes.

However, even with a compact data structure, voxel data representations usually exceed the memory
of current GPUs by large amounts. In addition, since we wanted our approach to scale to arbitrarily
large scenes, restricting the storage of a scene to the amount of data that fits inside the video memory
would not have been sufficient. Thus, we built an efficient GPU-based caching and on-demand loading
mechanism that allows us to virtualize totally our voxel data structure, and to keep only a small sub-
set of the whole dataset inside the video memory. This caching scheme maximizes the reuse of data
loading inside the video memory during the exploration of a scene, thus minimizing the streaming of
data.

Data can be either streamed from the much larger system memory, or generated directly on the GPU
either procedurally or from another representation (such as a triangle mesh voxelized on the fly). This
mechanism is entirely triggered by requests emitted per-ray directly during rendering, providing exact
visibility determination and minimal data production or loading. These efficient strategies adapt the
volume resolution according to the point of view and enable us to completely overcome the memory
limitation of the GPU, allowing fast rendering and exploration of very complex scenes and objects.
Furthermore, our algorithm inherently implements several acceleration methods that usually have to
be addressed with particular routines and strategies. Frustum culling, visibility testing, LOD selection,
temporal coherence and refinement strategies are all integrated in the same framework: our per-ray
queries.

Thanks to these strategies, we demonstrated how the rendering based on our voxel representation can
provide high quality and can be more efficient than the standard GPU rasterization for very complex

182

meshes. We validated our approach with several example scenes presented throughout this thesis, as
well as performance analysis associated with each main parts of this work.

Based on these main contributions, we demonstrated how our new voxel-based geometry represen-
tation and pre-integrated cone-tracing can be used to render efficiently blurry effects such as soft
shadows and depth-of-field. Finally, we introduced a new real-time approach to estimate two bounds
of indirect lighting as well as ambient occlusion, relying on our pre-filtered geometry representation
and voxel-based cone tracing. For this application, we have also shown how our representation can
handle animated objects through dynamic updates of the data structure and real-time voxelization of
triangle meshes.

We have demonstrated how voxel-based representations can be a valuable solution to represent very
complex scenes and objects. All their advantages hint at a more extensive future use of such repre-
sentations in real-time applications, in particular in video games. The whole approach we proposed
in this thesis provides an efficient solution in this context, and we believe it will pave the way to many
new interesting effects and rendering paradigms.

Perspectives and future work

In this thesis, we tackled the problem of memory consumption of voxel representations, and we
strongly believe that we built the foundations required for future work and research based on mas-
sive voxel scenes. In order to make this work fully reusable by other researchers, or to be easily
integrated into an industrial project, we are currently transforming our reference implementation into
an open source project that will be entirely freely available to the community.

We see several interesting future research directions based on our work. The first main area we would
like to explore is the animation of voxel representations. Being able to render efficiently animated
scenes is now the major block for the usage of voxel representations in video games. We started
to address this problem in our global illumination application, by proposing a real-time voxelization
and pre-filtering scheme of animated triangle-based geometry. However, this scheme is not optimal.
First it is not compatible with our on-demand loading scheme, and thus does not scale with a large
number of animated objects. The voxelization of an animated object has to be done at each frame,
whenever it is visible or not. In addition, this voxelization has to be done from bottom to top in order
to compute pre-filtering, which means that a high resolution voxelization is always needed, whatever
the resolution actually required for rendering.

This represents a major problem for the scalability of the approach and leads to another major area of
future work: the efficient and scalable pre-filtering of complex representations. Providing solutions
to the top-to-bottom pre-filtering problem based on input surface geometry is challenging, however
we believe that approaches based on procedural generation are a very promising direction to explore.
Furthermore, correlation aware filtering schemes (cf. our decorrelation hypotheses, in Section 4.4)
are required in order to enhance the quality and the accuracy of the cone-tracing approach, especially
when using large cone apertures.

For the animation of voxel representations, we strongly believe in animation through deformation of
the volumetric representation using a shell-map approach [PBFJ05, IMWO7]. This would make it
possible to animate a low resolution triangle mesh, like a character, and to add thin volumetric details
that would be deformed on its surface. Such deformation poses several major problems. Among them,
the efficient tracing of curved rays and cones in the voxel domain, as well as the need for pre-filtering
with anisotropic volume dimensions, in order to handle geometry compressions. We also see a great
interest of such shell-maps using very high resolution voxel data for authoring tools. Indeed, voxel
sculpting would greatly benefit from the ability to directly add high resolution voxel details inside a

183

thin layer at the surface of triangle mesh. The mesh could be moved and deformed freely during the
editing to add details where needed, at any resolution.

More generally, in the context of high performance parallel rendering, we strongly believe that we are
going toward the use of more and more structured representations to render synthetic scenes. Such
structuring is critical to allow image-order rendering approaches, that allow minimizing data access
as well as framebuffer bandwidth. Data access becomes the major bottleneck in parallel computing
architectures, both in terms of latency and in terms of power consumption. In addition, such scene
structuring that provides fast global random access to any geometry of the scene, allows for an easier
implementation of global effects which are difficult to achieve with rasterization-based approaches.
Consequently, we believe in the convergence between the object-order rasterization approach and the
image-order ray-tracing approaches, with increasing needs for screen-space locality and thus increas-
ing structuring of the input geometric data.

184 \ chapter 10. Conclusions and perspectives

Part IV

Appendix

186

Preliminary GPU performance characterization

A.1 Characterizing texture cache behavior

In order to make an optimal volume ray-casting implementation on a given hardware, one of the most
important points is to characterize the behavior of the texture cache with the sampling scheme appear-
ing in ray-casting typical usage. The texture cache (cf. Section 1.3) is an on-chip very fast memory
that is used by the texture sampling hardware of the GPU. It allows us to maximize the reuse of data
read from the video memory among multiple threads and different samples. This lowers the amount of
data transfered between the GPU and the video memory, and improves performance of texture access.
The performance of this cache is critical for our ray-casting application that heavily relies on texture
sampling operations (cf. Chapter 6).

In our ray-casting usage, the rendering is done by assigning one thread per screen pixel, each thread in
charge of computing the volume rendering integral along a single ray by sequentially sampling inside
bricks stored in a 3D texture (Chap. 6). The performance behavior of the texture cache in such a con-
text will impact the technological choices we will make in terms of the scheduling of the rendering
threads, and the type of texture to use.

Especially, the main questions we wanted to answer were:

o Is the cache behavior isotropic ? Is the cache efficiency the same whatever the viewing direction
? If not, how does it impact performance ?

e How does the caching performance vary in function of the type of texture used ? In our case, a
3D texture that provides fully accelerated trilinear access to the data can be used, or a Layered
2D texture that only provides bilinear interpolation, but may provide better access performance.
In the case of the Layered 2D texture, the third interpolation has to be computed inside the
shaders/CUDA kernel, increasing the bandwidth used between the shader units and the texture
units and the charge of the stream processors.

To answer these questions, we built a series of tests using a simple ray-casting code implemented
in CUDA, sampling volume data inside a texture. Rays are launched using orthographic projection,
with one ray (thread) per pixel. Each thread does a fixed number of texture access (1000 texture ac-
cess/thread). We compared the performance of different types of textures and data formats depending
on the traversal direction and the screen orientation, and we tested them with and without interpola-
tion. These tests were done on an NVIDIA GTX580 GPU.

The results of these experiments are presented in Table A.1 and Graph A.1. They present the time
spent in texture reads depending on the traversal direction (in the form ScreenAxis, ScreenAxis,
DepthAxis) and the texture type, for RGBAS texel format. We compared access to 3D and Layered
2D textures (2D texture arrays, EXT_texture_array) with the nearest interpolation. We also com-
pared the access time to these two texture types with linear interpolation. We tested 3D texture with
full trilinear interpolation, Layered 2D texture with bilinear interpolation and no interpolation between
layers, and Layered 2D with interpolation between layers done in the kernel.

188 | chapter A. Preliminary GPU performmance characterization

The first interesting thing to note is that the texture read performance is not the same whatever the
traversal direction. This means that the texture cache does not have an isotropic behavior on succes-
sive reads, and thus that geometry of the cache lines is not cubical. The second interesting information
is that with a full trilinear interpolation, 3D textures appear on average 1.74x faster than Layered 2D
textures (when averaging the 6 tested screen orientations and directions).

Table A.1 Total times of texture reads for ray-casting inside a 512° RGBAS texture, with orthographic
projection and step size ﬁ depending on the view direction and orientation (and in average), and the
type of texture employed.

Filter Mode | Texturetype || XYZ | YXZ | XZY | ZXY || YZX [ZY X || Average |
Nearest 3D || 11,90 [11,76 || 11,76 | 14,08 || 1923 | 18,52 14,54
Layered 2D || 943 | 9,52 || 11,90 | 31,25 || 22,22 | 27,78 18,69
Linear 3D || 12,20 [13,16 || 26,32 | 37,04 || 43.48 | 50,00 30.36
Layered 2D
No Zinterp. || 10,53 | 13,89 || 23,26 | 76,92 | 43,48 | 66,67 39,12
Layered 2D
Man. Z interp. || 21,28 | 4545 || 28,57 | 100,00 || 50,00 | 7143 52,79

M Nearest 3D

21,28
9,43 10,53
11,90 12,20

XYz

Rendering times in ms (RGBAS)

M Nearest Layered 2D

YXZ

Linear 3D

Xzy

ZXY

M Linear Layered 2D No Z interp. M Linear Layered 2D Man. Z interp.
100,00

YZX ZY X Average

Figure A.1. Graph view of the data presented table A.1.

189

A.2 Rasterization and scheduling of fragment shading

A.2.1 Motivations

Many hardware details are still hidden from the programmer, in particular mechanisms used for prim-
itives rasterisation and fragments shading. Understanding how fragments are scheduled among the
GPU processing units is a critical points for our research, and we investigated the behaviour of this
part of the GPU pipeline using a series of directed tests.

Criticality of optimization on GPU is very different than for CPU, due to the extremely high per-
formance contrasts. GPUs have "fast paths": Unintuitive depressing 1000x slowdowns as compared
to expectations are often met when programming. Conversely, knowing these fast paths can lead to
more than 1000x speedups. To find and remain in these fast paths, it is important to understand how
the GPU works and behaves. In particular, we investigated how fragment shader threads are sched-
uled among the GPU "stream processors" in charge of executing them (Sec. 1.3). These low level
experiments were done on the G80 NVIDIA GPU in 2007.

(@ (b)
Figure A.2. (a): A tile containing a very slow fragment (1) makes all next tiles scheduled on the same TP wait.
Others TPs continue their processing until their fragments FIFO are empty (2). (b): Screen subdivision in tiles
spread among G80 MPs. Tiles subdivision into 8x4 pixels sub-tiles.

A.2.2 Methodology

We wrote a small probe program "fragSniffer" allowing us to trigger various configuration tests pro-
viding 2 kinds of outputs:

o Showing fragment writing order into the front-buffer, comprising locks, stalls, synchronizations.
e Measuring performance changes when changing configuration parameters.

The principle is to use very slow fragment shaders (doing simple additions into a user controlled loop,
typically 10% iterations). In particular, some of our fragment shaders slow down only for one pixel on
screen, or for a couple of pixels. In case of several slow pixels, these can run either the same shader
instructions or 2 different branches of a conditional statement. Speed, number of slow pixels and their
location, as well as speed of "background fragments" can all be controlled manually.

Tested configurations concern the pattern and relative location of slow pixels, and also the type of
primitive drawn on screen: large or small, stripped or not, 2D,1D or 0D, traced in smart, raster or
shuffle order, tiling the screen or overlapping. Note that due to the use of extremely slow shaders, the
cost of CPU, bus transfer and vertex transform is negligible.

Our probe tool fragSniffer is freely available here: http://www.icare3d.org/FragSniffer/
FragSniffer_0.2.zip

http://www.icare3d.org/FragSniffer/FragSniffer_0.2.zip
http://www.icare3d.org/FragSniffer/FragSniffer_0.2.zip

190

The board used for our experiments was a 8800 GTS: it has 96 Stream processors (SP), grouped by
8 working in SIMD into 12 Multi Processors (MP), which are paired as 6 Texture Processors (TP).
Threads are scheduled on Multi Processors into Warps of 32 threads executed in SIMD (within 4
cycles) on the 8 SPs of the MP (see [[NVI11a] for more details).

We also ran our probe on other boards, e.g. a 8600M GT having 16 SP grouped into 4 MP =2 TP just
to verify that our results were consistent.

Disclaimer

The G80 is a quite complex ecosystem we tried to locally understand by running these experiments.
We might have misinterpreted some behaviors, conducted some inappropriate experiments, or even
incorrectly designed or run some of them. We provide our observations and conclusions so that you
can trace our reasoning, and provide our probing tool so that our data can be verified.

I . I .
I I |
I I |
. N . |
I I . |

I . I .

I . I .

I . I .

I . I .
I I . |
| I . |
I I . |
. N . |

I . I .

(a) (b)

Figure A.3. (a): Screen subdivision in tiles spread among G80 MPs. Tiles subdivision into 8x4 pixels sub-tiles.
(b): Display of the footprint of a 32 threads warp.

A.2.3 Summary of our "interpretations and discoveries™

Here is a quick summary of our initial conclusions; all our experiments and deductions can be found
in our online article http://www-evasion.imag. fr/GPU/CN®S.

o The rasterizer allocates fragments to texture processors (pairs of multiprocessors) based on the
location on screen:the screen is subdivided in tiles of size 16x16 which are bounds to TPs ac-
cording to a fixed pattern (see Figure A.2(b)).

e For one given TP, the flow of fragments is assembled in warps of 32 threads then stored in a
FIFO (Fig. A.3(a)). Warps of one FIFO are executed by any of the two MPs of the TP.

e Threading can use shader wait-states (texture access, transcendent maths, pipeline dependen-
cies) to run some warps partly in parallel on the same MP.

o In the general case, warp fragments are not geometrically ordered and can correspond to any
location within the screen footprint of a TP (see Figure A.3(b)).

¢ In fact, fragments are managed in groups of 2x2 (4x2?) "superfragments". In particular, points,
lines and triangle borders yield some waste since "ghost fragments" are generated to fill super-
fragments and are treated as regular threads (with no output). For an unknown reason, only 4
isolated points or primitives of size 1 can fit a warp (8 were expected).

e If one FIFO is full the rasterizer has to wait, which might starve the other TPs (see Fig-
ure A.2(a)).

http://www-evasion.imag.fr/GPU/CN08

Bibliography

[ABAO2]

[AFOO05]

[AHOS]

[Ake93]

[ALO4]

[AMOO]

[AMO4]

[Amag4]

[AMHHOS]

[AW8T]

[BD02]
[BD06a]

[BDO6b]

[BEW*98]

[BHGS06]

Carlos Anddjar, Pere Brunet, and Dolors Ayala. Topology-reducing surface simplifica-
tion using a discrete solid representation. ACM Transactions on Graphics, 21:88-105,
April 2002.

Okan Arikan, David A. Forsyth, and James F. O’Brien. Fast and detailed approximate
global illumination by irradiance decomposition. In ACM Transactions on Graphics
(Proc. SIGGRAPH), pages 1108-1114, 2005.

A. Asirvatham and H. Hoppe. GPU Gems 2, chapter "Terrain rendering using GPU-
based geometry clipmaps", pages 109-122. 2005.

Kurt Akeley. Reality engine graphics. In Proceedings of SIGGRAPH 93, pages 109—
116, 1993.

Timo Alla and Samuli Laine. Alias-free shadow maps. In Proceedings of EGSR, pages
161-166, June 2004.

Ulf Assarsson and Tomas Moller. Optimized view frustum culling algorithms for
bounding boxes. J. Graph. Tools, 5:9-22, January 2000.

T. Aila and V. Miettinen. dpvs: an occlusion culling system for massive dynamic en-
vironments. Computer Graphics and Applications, IEEE, 24(2):86 — 97, march-april
2004.

John Amanatides. Ray tracing with cones. In Proceedings of SIGGRAPH 84, pages
129-135, 1984.

Tomas Akenine-Moller, Eric Haines, and Natty Hoffman. Real-Time Rendering 3rd
Edition. A. K. Peters, Ltd., 2008.

John Amanatides and Andrew Woo. A fast voxel traversal algorithm for ray tracing.
In Eurographics, pages 3—10. 1987.

David Benson and Joel Davis. Octree textures. In SIGGRAPH, pages 785-790, 2002.

Lionel Baboud and Xavier Décoret. Realistic water volumes in real-time. In EG Work-
shop on Natural Phenomena. Eurographics, 2006.

Lionel Baboud and Xavier Décoret. Rendering geometry with relief textures. In
Graphics Interface 06, 2006.

Lars Bishop, Dave Eberly, Turner Whitted, Mark Finch, and Michael Shantz. Design-
ing a PC Game Engine. IEEE Comput. Graph. Appl., 18:46-53, January 1998.

Tamy Boubekeur, Wolfgang Heidrich, Xavier Granier, and Christophe Schlick.
Volume-surface trees. Computer Graphics Forum, 25(3):399-409, 2006. Proceedings
of EUROGRAPHICS 2006.

192

[BHMFO08]

[Bik07]

[Bli&2]

[Bly06]

[BMW*09]

[BN11]

[BNLO6]

[BNM*08]

[BNSO1]

[BOAO9]

[BT04]

[BTGO3]

[BWO3]

[BWPP04]

[Car03]
[Cat74]

Johanna Beyer, Markus Hadwiger, Torsten Moller, and Laura Fritz. Smooth Mixed-
Resolution GPU Volume Rendering. In IEEE/EG International Symposium on Volume
and Point-Based Graphics, pages 163 — 170, 2008.

J. Bikker. Real-time ray tracing through the eyes of a game developer. In Interactive
Ray Tracing, 2007. RT "07. IEEE Symposium on, pages 1-1, Sept. 2007.

James F. Blinn. Light reflection functions for simulation of clouds and dusty surfaces.
In SIGGRAPH : Proceedings of the 9th annual conference on Computer graphics and
interactive techniques, 1982.

David Blythe. The direct3d 10 system. ACM Transactions on Graphics, 25:724-734,
July 2006.

Jiri Bittner, Oliver Mattausch, Peter Wonka, Vlastimil Havran, and Michael Wimmer.
Adaptive global visibility sampling. ACM Transactions on Graphics, 28(3):94:1—
94:10, August 2009. Proceedings of ACM SIGGRAPH 2009.

Eric Bruneton and Fabrice Neyret. A survey of non-linear pre-filtering methods for
efficient and accurate surface shading. IEEE Transactions on Visualization and Com-
puter Graphics, 2011.

Antoine Bouthors, Fabrice Neyret, and Sylvain Lefebvre. Real-time realistic illumina-
tion and shading of stratiform clouds. In Eurographics Workshop on Natural Phenom-
ena, sep 2006.

Antoine Bouthors, Fabrice Neyret, Nelson Max, Eric Bruneton, and Cyril Crassin. In-
teractive multiple anisotropic scattering in clouds. In ACM Symposium on Interactive
3D Graphics and Games (13D), 2008.

Imma Boada, Isabel Navazo, and Roberto Scopigno. Multiresolution volume visual-
ization with a texture-based octree. The Visual Computer, 13(3), 2001.

Markus Billeter, Ola Olsson, and Ulf Assarsson. Efficient stream compaction on wide
simd many-core architectures. In HPG ’09: Proceedings of the Conference on High
Performance Graphics 2009, pages 159-166, 2009.

Zoe Brawley and Natalya Tatarchuk. Parallax occlusion mapping: Self-shadowing,
perspective-correct bump mapping using reverse height map tracing. In ShaderX3:
Advanced Rendering Techniques in DirectX and OpenGL. 2004.

Bill La Barge, Jerry Tessendorf, and Vijoy Gaddipati. Tetrad volume and particle ren-
dering in X2. In SIGGRAPH Sketch,2003. http://portal.acm.org/ft_gateway.
cfm?id=965491.

Jiri Bittner and Peter Wonka. Visibility in computer graphics. Environment and Plan-
ning B: Planning and Design, 30(5):729-755, September 2003.

Jif1 Bittner, Michael Wimmer, Harald Piringer, and Werner Purgathofer. Coherent hier-
archical culling: Hardware occlusion queries made useful. Computer Graphics Forum,
23(3):615-624, September 2004. Proceedings of EUROGRAPHICS 2004.

Christian Carvajal. Shaken and stirred, XXX visual effects. CINEFEX, 92, 2003.

Edwin Earl Catmull. A subdivision algorithm for computer display of curved surfaces.
PhD thesis, 1974. AAI7504786.

http://portal.acm.org/ft_gateway.cfm?id=965491
http://portal.acm.org/ft_gateway.cfm?id=965491

[CBO4a]

[CBO4b]

[CBWRO7]

[CCCB8T]

[CCF94]

[CDP95]

[CE97]

[CE98]

[CGPO4]

[CHCHO6]

[Cla76]

[CN94]

[CNO7]

[CNLEO09]

[CNSE10]

193

Per H. Christensen and Dana Batali. An irradiance atlas for global illumination in
complex production scenes. In Rendering Techniques (EGSR), pages 133-142, 2004.

Per H. Christensen and Dana Batali. An irradiance atlas for global illumination in
complex production scenes. In Proceedings of EGSR, pages 133-141, June 2004.

Jean Pierre Charalambos, Jiii Bittner, Michael Wimmer, and Eduardo Romero. Opti-
mized hlod refinement driven by hardware occlusion queries. In Advances in Visual
Computing (Third International Symposium on Visual Computing — ISVC 2007), pages
106-117. Springer, November 2007.

Robert L. Cook, Loren Carpenter, and Edwin Catmull. The reyes image rendering
architecture. In Proceedings of SIGGRAPH ’87, pages 95-102, 1987.

Brian Cabral, Nancy Cam, and Jim Foran. Accelerated volume rendering and tomo-
graphic reconstruction using texture mapping hardware. In VVS: Proceedings of the
1994 symposium on Volume visualization, 1994.

Frédéric Cazals, George Drettakis, and Claude Puech. Filtering, clustering and hi-
erarchy construction: a new solution for ray tracing very complex environments. In
Eurographics, September 1995. Maastricht.

Michael Cox and David Ellsworth. Application-controlled demand paging for out-of-
core visualization. In VIS ’97: Proceedings of the 8th conference on Visualization *97,
pages 235—., 1997.

David Cline and Parris K. Egbert. Interactive display of very large textures. In Pro-
ceedings of the conference on Visualization ’98, pages 343-350, 1998.

Sharat Chandran, Ajay K. Gupta, and Ashwini Patgawkar. A fast algorithm to display
octrees, September 18 2004.

Nathan A. Carr, Jared Hoberock, Keenan Crane, and John C. Hart. Fast GPU ray
tracing of dynamic meshes using geometry images. In GI : Proceedings of the 2006
conference on Graphics interface, pages 203-209, 2006.

James H. Clark. Hierarchical geometric models for visible surface algorithms. Com-
munications of the ACM, 19:547-554, October 1976.

Timothy J. Cullip and Ulrich Neumann. Accelerating volume reconstruction with 3D
texture hardware. Technical report, 1994.

Cyril Crassin and Fabrice Neyret. Représentation et algorithmes pour I’exploration
interactive de volumes procéduraux étendus et détaillés. Master’s thesis, UJF, INPG,
june 2007.

Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar Eisemann. Gigavoxels :
Ray-guided streaming for efficient and detailed voxel rendering. In ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games (13D), feb 2009,

Cyril Crassin, Fabrice Neyret, Miguel Sainz, and Elmar Eisemann. Efficient Render-
ing of Highly Detailed Volumetric Scenes with GigaVoxels. In book: GPU Pro, chapter
X.3, pages 643-676. A K Peters, 2010.

194

[COCSDO03a]

[COCSDO03b]

[COMI8]

[CPC84]

[Cro77]

[Cry10]
[CS94]

[CZP68]

[DB89]

[DDSDO03]

[DGPRO2]

[DGR*09]

[DH92]

[DKTS07]

[DNO04]

[DNO09]

[Dom)]

[DPH"03]

Daniel Cohen-Or, Yiorgos L. Chrysanthou, Claudio T. Silva, and Fredo Durand. A
Survey of Visibility for Walkthrough Applications. IEEE Transactions on Visualiza-
tion and Computer Graphics, 9(3):412—-431, 2003.

Daniel Cohen-Or, Yiorgos L. Chrysanthou, Cldudio T. Silva, and Frédo Durand. A sur-
vey of visibility for walkthrough applications. In IEEE Transactions on Visualization
and Computer Graphics, volume 9, pages 412—431, July 2003.

Jonathan Cohen, Marc Olano, and Dinesh Manocha. Appearance-preserving simplifi-
cation. In Proceedings of SIGGRAPH ’98, pages 115-122, 1998.

Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing. In
Proceedings of SIGGRAPH ’84, pages 137-145, 1984.

Franklin C. Crow. The aliasing problem in computer-generated shaded images. Com-
munications of the ACM, 20:799-805, November 1977.

Crytek. Crytek terrains authoring, 2010.

Daniel Cohen and Zvi Sheffer. Proximity clouds - an acceleration technique for 3D
grid traversal. The Visual Computer, 11(1):27-38, 1994.

Kenneth M. Case, Paul F. Zweifel, and G. C. Pomraning. Linear transport theory.
Physics Today, 21(10):72-73, 1968.

Jevans D. and Wyvill B. Adaptive voxel subdivision for ray tracing. In Graphics
Interface, pages 164—172, June 1989.

Xavier Décoret, Frédo Durand, Francois X. Sillion, and Julie Dorsey. Billboard clouds
for extreme model simplification. In ACM SIGGRAPH 2003 Papers, pages 689—696,
2003.

David DeBry, Jonathan Gibbs, Devorah DelLeon Petty, and Nate Robins. Painting and
rendering textures on unparameterized models. In SIGGRAPH, pages 763-768, 2002.

Z. Dong, T. Grosch, T. Ritschel, J. Kautz, and H.-P. Seidel. Real-time indirect illumi-
nation with clustered visibility. In Proceedings of VMV, 2009.

John Danskin and Pat Hanrahan. Fast algorithms for volume ray tracing. In Proceed-
ings of the 1992 workshop on Volume visualization, pages 91-98, 1992.

Zhao Dong, Jan Kautz, Christian Theobalt, and Hans-Peter Seidel. Interactive global
illumination using implicit visibility. In Proceedings of Pacific Graphics, 2007.

Philippe Decaudin and Fabrice Neyret. Rendering forest scenes in real-time. In Ren-
dering Techniques (EGSR), pages 93—-102, june 2004.

Philippe Decaudin and Fabrice Neyret. Volumetric billboards. Computer Graphics
Forum, 28(8):2079-2089, 2009.

Digital Domain. Digital domain web site. http://www.digitaldomain. com.

David E. DeMarle, Steven Parker, Mark Hartner, Christiaan Gribble, and Charles
Hansen. Distributed interactive ray tracing for large volume visualization. In Pro-
ceedings of the 2003 IEEE Symposium on Parallel and Large-Data Visualization and
Graphics, pages 12—, 2003.

http://www.digitaldomain.com

[DSO05]

[DSDDO07]

[DSSCO08]

[Dun04]

[EDO8]

[EHK*04]

[EHK*06]

[EKEO1]

[EVG04]

[FBH*10]

[fer10]

[FLB*09]

[For07]

[Fou92a]

[Fou92b]

[FPO2a]

195

C. Dachsbacher and M. Stamminger. Reflective shadow maps. In Proceedings of 13D,
pages 203-213, 2005.

Carsten Dachsbacher, Marc Stamminger, George Drettakis, and Frédo Durand. Im-
plicit visibility and antiradiance for interactive global illumination. ACM Transactions
on Graphics (Proc. SIGGRAPH), 26(3), 2007.

Joel Daniels, Cldudio T. Silva, Jason Shepherd, and Elaine Cohen. Quadrilateral mesh
simplification. In ACM SIGGRAPH Asia 2008 papers, pages 148:1-148:9, 2008.

Jody Duncan. Freeze frames, The Day After Tomorrow visual effects. CINEFEX, 98,
2004.

Elmar Eisemann and Xavier Décoret. Single-pass gpu solid voxelization and appli-
cations. In GI '08: Proceedings of Graphics Interface 2008, volume 322 of ACM
International Conference Proceeding Series, pages 73—80. Canadian Information Pro-
cessing Society, 2008.

Klaus Engel, Markus Hadwiger, Joe M. Kniss, Aaron E. Lefohn, Christof Rezk
Salama, and Daniel Weiskopf. Real-time volume graphics. In SIGGRAPH '04: ACM
SIGGRAPH 2004 Course Notes, page 29, 2004.

Klaus Engel, Markus Hadwiger, Joe M. Kniss, Christof Rezk-salama, and Daniel
Weiskopf. Real-time Volume Graphics. A. K. Peters, Ltd., 2006.

Klaus Engel, Martin Kraus, and Thomas Ertl. High-quality pre-integrated volume ren-
dering using hardware-accelerated pixel shading. In ACM SIGGRAPH/EUROGRAPH-
ICS workshop on Graphics hardware (HWWS), pages 9-16, 2001.

Manfred Ernst, Christian Vogelgsang, and Giinther Greiner. Stack implementation on
programmable graphics hardware. In VMV, pages 255-262, 2004.

Kayvon Fatahalian, Solomon Boulos, James Hegarty, Kurt Akeley, William R. Mark,
Henry Moreton, and Pat Hanrahan. Reducing shading on gpus using quad-fragment
merging. In ACM SIGGRAPH 2010 papers, pages 67:1-67:8, 2010.

NVIDIA Fermi Architecture White Paper. http://www.nvidia.com/object/
fermi_architecture.html, 2010.

Kayvon Fatahalian, Edward Luong, Solomon Boulos, Kurt Akeley, William R. Mark,
and Pat Hanrahan. Data-parallel rasterization of micropolygons with defocus and mo-
tion blur. In Proceedings of the Conference on High Performance Graphics 2009,
pages 59-68, 2009.

Joe Fordham. Pirates of the Caribbean: At World’s End visual effects. CINEFEX, 110,
2007.

Alain Fournier. Filtering normal maps and creating multiple surfaces. Technical report,
1992.

Alain Fournier. Normal distribution functions and multiple surfaces. In Graphics In-
terface’92 Workshop on Local Illumination, pages 45-52, May 1992.

David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach. Prentice
Hall, us edition, August 2002.

http://www.nvidia.com/object/fermi_architecture.html
http://www.nvidia.com/object/fermi_architecture.html

196

[FPO2b]

[FPO2c]

[FS97]

[FS05]

[FWS]

[GBKO6]

[GBSFO05]

[GHFPOS§]

[GK96]

[GKYO08]

[GMO5]

[GMAGO08]

[Gro]

[GS04]

[GWGS02]

Frisken and Perry. Simple and efficient traversal methods for quadtrees and octrees.
Journal of Graphics Tools, 7, 2002.

Sarah F. Frisken and Ronald N. Perry. Simple and efficient traversal methods for
quadtrees and octrees. Journal of Graphics Tools, 7(7):2002, 2002.

Jason Freund and Kenneth Sloan. Accelerated volume rendering using homogeneous
region encoding. In Proceedings of the 8th conference on Visualization *97, pages
191, 1997.

Tim Foley and Jeremy Sugerman. Kd-tree acceleration structures for a GPU ray-
tracer. In HWWS: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference
on Graphics hardware, pages 15-22, 2005.

Heiko Friedrich, Ingo Wald, and Philipp Slusallek. Interactive Iso-Surface Ray Tracing
of Massive Volumetric Data Sets. In Proceedings of the 2007 Eurographics Symposium
on Parallel Graphics and Visualization.

Michael Guthe, Akos Balazs, and Reinhard Klein. Near optimal hierarchical culling:
Performance driven use of hardware occlusion queries. In Eurographics Symposium
on Rendering 2006, June 2006.

Anselm Grundhéfer, Benjamin Brombach, Robert Scheibe, and Bernd Frohlich. Level
of detail based occlusion culling for dynamic scenes. In Proceedings of GRAPHITE
’05, pages 3745, 2005.

Jean-Dominique Gascuel, Nicolas Holzschuch, Gabriel Fournier, and Bernard Per-
oche. Fast non-linear projections using graphics hardware. In Proceedings of 13D,
February 2008.

Allen Van Gelder and Kwansik Kim. Direct volume rendering with shading via three-
dimensional textures. In VVS: Proceedings of the symposium on Volume visualization,
1996.

Enrico Gobbetti, Dave Kasik, and Sung-eui Yoon. Technical strategies for massive
model visualization. In SPM ’08: Proceedings of the 2008 ACM symposium on Solid
and physical modeling, pages 405-415, 2008.

Enrico Gobbetti and Fabio Marton. Far voxels: a multiresolution framework for in-
teractive rendering of huge complex 3d models on commodity graphics platforms. In
ACM Transactions on Graphics (Proceedings of SIGGRAPH), 2005.

Enrico Gobbetti, Fabio Marton, Jose Antonio, and Iglesias Guitian. A single-pass
GPU ray casting framework for interactive out-of-core rendering of massive volumet-
ric datasets. The Visual Computer, 24(7):797-806, 2008.

Khronos Group. Registre des extensions OpenGL. http://www.opengl.org/
registry/.

S. Guthe and W. Strasser. Advanced techniques for high quality multiresolution vol-
ume rendering. In Computers & Graphics, pages 51-58. Elsevier Science, 2004.

Stefan Guthe, Michael Wand, Julius Gonser, and Wolfgang Strasser. Interactive ren-

dering of large volume data sets. In Proceedings of the conference on Visualization
’02, pages 53-60, 2002.

http://www.opengl.org/registry/
http://www.opengl.org/registry/

[GY98]

[Had02]

[Hav00]

[HH84]

[HHS93]

[HLSRO9]

[Hop96]

[Hor05]

[HPBO7]

[HQKO5]

[HSA91]

[HSC*05]

[HSHHO7]

[HSO07]

[HSRGO7]

197

Michael E. Goss and Kei Yuasa. Texture tile visibility determination for dynamic tex-
ture loading. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on
Graphics hardware, pages 55—f., 1998.

Hadwiger et al. High-quality volume graphics on consumer PC hardware. In Course
Notes 42 - SIGGRAPH, 2002.

Vlastimil Havran. Heuristic Ray Shooting Algorithms. Ph.D. thesis, Department of
Computer Science and Engineering, Faculty of Electrical Engineering, Czech Tech-
nical University in Prague, November 2000. http://www.cgg.cvut.cz/~havran/
phdthesis.html.

Paul S. Heckbert and Pat Hanrahan. Beam tracing polygonal objects. In Proceedings
of SIGGRAPH 84, pages 119-127, 1984.

H. C. Hege, T. Hollerer, and D. Stalling. Volume rendering mathematical models and
algorithmic aspects, 1993.

Markus Hadwiger, Patric Ljung, Christof Rezk Salama, and Timo Ropinski. Advanced
illumination techniques for GPU-based volume raycasting. In ACM SIGGRAPH 2009
Courses, pages 2:1-2:166, 2009.

Hugues Hoppe. Progressive meshes. In Proceedings of SIGGRAPH ’96, pages 99-108,
1996.

D. Horn. GPU Gems 2 - Programming Techniques for High-Performance Graphics
and General-Purpose Computation, chapter "Stream reduction operations for GPGPU
applications", pages 573-589. 2005.

Milos$ Hasan, Fabio Pellacini, and Kavita Bala. Matrix row-column sampling for the
many-light problem. ACM Transactions on Graphics (Proc. SIGGRAPH), 26(3), 2007.

Wei Hong, Feng Qiu, and A. Kaufman. GPU-based object-order ray-casting for large
datasets. In Volume Graphics, Fourth International Workshop on, pages 177-240,
2005.

Pat Hanrahan, David Salzman, and Larry Aupperle. A rapid hierarchical radiosity
algorithm. Computer Graphics (Proc. SIGGRAPH), 25(4):197-206, 1991.

Justin Hensley, Thorsten Scheuermann, Greg Coombe, Montek Singh, and Anselmo
Lastra. Fast summed-area table generation and its applications. Computer Graphics
Forum (Proc. Eurographics), 24(3):547-555, 2005.

Daniel Reiter Horn, Jeremy Sugerman, Mike Houston, and Pat Hanrahan. Interactive
k-d tree GPU raytracing. In ACM Siggraph symposium on Interactive 3D graphics and
games (I13D), 2007.

Mark Harris, Shubhabrata Sengupta, and John D. Owens. Parallel prefix sum (scan)
with CUDA. In GPU Gems 3, chapter 39, pages 851-876. Addison Wesley, August
2007.

Charles Han, Bo Sun, Ravi Ramamoorthi, and Eitan Grinspun. Frequency domain nor-
mal map filtering. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007),
26(3):28:1-28:12, 2007.

http://www.cgg.cvut.cz/~havran/phdthesis.html
http://www.cgg.cvut.cz/~havran/phdthesis.html

198

[HVAPBOS]

[Jen96]

[JenO1]
[JLBMO5]

[IMWO07]

[Kaj86]

[Kap02]

[Kap03]

[KBO8]

[KD02]

[KD10]

[KEO2]

[Kel97]

[KH84]

[KHO1]

[KHO5]

[Khr]
[KHWO7]

Milo§ HaSan, Edgar Veldzquez-Armenddriz, Fabio Pellacini, and Kavita Bala. Tensor
Clustering for Rendering Many-Light Animations. Comput. Graph. Forum (Proc. of
EGSR), 27(4):1105-1114, 2008.

Henrik Wann Jensen. Global illumination using photon maps. In Proceedings of the eu-
rographics workshop on Rendering techniques "96, pages 21-30, London, UK, 1996.
Springer-Verlag.

H. W. Jensen. Realistic Image Synthesis Using Photon Mapping. A. K. Peters, 2001.

Gregory S. Johnson, Juhyun Lee, Christopher A. Burns, and William R. Mark. The
irregular z-buffer: Hardware acceleration for irregular data structures. ACM Transac-
tions on Graphics, 24(4):1462-1482, 2005.

Stefan Jeschke, Stephan Mantler, and Michael Wimmer. Interactive smooth and curved
shell mapping. In Rendering Techniques 2007 (Proceedings Eurographics Symposium
on Rendering), pages 351-360. Eurographics, 6 2007.

James T. Kajiya. The rendering equation. Comput. Graph. (Proc. SIGGRAPH),
20(4):143-150, 1986.

Alan Kapler. Evolution of a vfx voxel tool. In SIGGRAPH Sketch, 2002. http:
//portal.acm.org/ft_gateway.cfm?id=1242192.

Alan Kapler. Avalanche! snowy FX for XXX. In SIGGRAPH Sketch, 2003.
http://portal.acm.org/ft_gateway.cfm?id=965492.

Martin Kraus and Kai Biirger. Interpolating and downsampling rgba volume data. In
Proceedings of Vision, Modeling, and Visualization 2008, 2008.

Oliver Kersting and Jiirgen Déllner. Interactive 3D visualization of vector data in GIS.
In GIS : Proceedings of the 10th ACM international symposium on Advances in geo-
graphic information systems, pages 107-112, 2002.

Anton Kaplanyan and Carsten Dachsbacher. Cascaded light propagation volumes for
real-time indirect illumination. In Proceedings of 13D, 2010.

Martin Kraus and Thomas Ertl. Adaptive texture maps. In ACM SIGGRAPH/EURO-
GRAPHICS conference on Graphics hardware (HWWS), pages 7-15, 2002.

Alexander Keller. Instant radiosity. In Proceedings of SSIGGRAPH, pages 49-56, 1997.

James T. Kajiya and Brian P Von Herzen. Ray tracing volume densities. In SIG-
GRAPH: Proceedings of the 11th annual conference on Computer graphics and inter-
active techniques, 1984.

Alexander Keller and Wolfgang Heidrich. Interleaved sampling. In Proceedings of
EGWR, pages 269-276, 2001.

Joshua Krall and Cody Harrington. Modeling and rendering of clouds on "stealth".
In SIGGRAPH Sketch, 2005. http://portal.acm.org/ft_gateway.cfm?id=
1187214.

Group Khronos. Opengl official website. http://www.opengl.org.

Aaron Knoll, Charles D Hansen, and Ingo Wald. Coherent Multiresolution Isosurface
Ray Tracing. Technical Report UUSCI-2007-001, 2007. (submitted for publication).

http://portal.acm.org/ft_gateway.cfm?id=1242192
http://portal.acm.org/ft_gateway.cfm?id=1242192
http://portal.acm.org/ft_gateway.cfm?id=965492
http://portal.acm.org/ft_gateway.cfm?id=1187214
http://portal.acm.org/ft_gateway.cfm?id=1187214
http://www.opengl.org

[Kir86]

[Kir09]

[Kis98]

[KK89]

[KKHO2]

[KnoO8]
[KPHEQ2]

[KSO1]

[KTI01]

[KWO03a]

[KWO03b]

[KWO05]

[KWAHO06]

[LC87]

[LDO7]

[LDNO4]

199

D B Kirk. The simulation of natural features using cone tracing. In Proceedings
of Computer Graphics Tokyo ‘86 on Advanced Computer Graphics, pages 129-144,
1986.

David Kirk. The CUDA hardware model. courses.ece.uiuc.edu/ece498/al/
lectures/lecture8-9-hardware.ppt, 2009.

Gokhan Kisacikoglu. The making of black-hole and nebula clouds for the motion pic-
ture “Sphere” with volumetric rendering and the f-rep of solids. In SIGGRAPH Sketch,
1998. http://portal.acm.org/ft_gateway.cfm?id=282285.

J. T. Kajiya and T. L. Kay. Rendering fur with three dimensional textures. In SIG-
GRAPH, pages 271-280, 1989.

Joe Kniss, Gordon Kindlmann, and Charles Hansen. Multidimensional transfer func-
tions for interactive volume rendering. IEEE Transactions on Visualization and Com-
puter Graphics, 8(3):270-285, 2002.

Aaron Knoll. A survey of octree volume rendering methods. 2008.

Joe Kniss, Simon Premoze, Charles Hansen, and David Ebert. Interactive translucent
volume rendering and procedural modeling. In VIS: Proceedings of the conference on
Visualization, pages 109-116, 2002.

James T. Klosowski and Cldudio T. Silva. Efficient conservative visibility culling using
the prioritized-layered projection algorithm. /EEE Transactions on Visualization and
Computer Graphics, 7:365-379, October 2001.

T. Kaneko, T. Takahei, M. Inami, N. Kawakami, Y. Yanagida, T. Maeda, and S. Tachi.
Detailed shape representation with parallax mapping. In In Proceedings of ICAT, pages
205-208, 2001.

J. Kruger and R. Westermann. Acceleration techniques for gpu-based volume render-
ing. In VIS "03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), 2003.

Jens Kriiger and Riidiger Westermann. Acceleration Techniques for GPU-based Vol-
ume Rendering. In Proceedings of IEEE Visualization, 2003.

Jens Kriiger and Riidiger Westermann. GPU simulation and rendering of volumet-
ric effects for computer games and virtual environments. Computer Graphics Forum,
24(3), 2005.

Ralf Kaehler, John Wise, Tom Abel, and Hans-christian Hege. Abstract GPU-Assisted
Raycasting for Cosmological Adaptive Mesh Refinement Simulations. In Eurograph-
ics /IEEE VGTC Workshop on Volume Graphics, pages 103 — 110, 2006.

William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. In SIGGRAPH : Proceedings of the 14th annual con-
ference on Computer graphics and interactive techniques, pages 163—-169, 1987.

Sylvain Lefebvre and Carsten Dachsbacher. Tiletrees. In ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games (13D), 2007.

Sylvain Lefebvre, Jerome Darbon, and Fabrice Neyret. Unified texture management
for arbitrary meshes. Technical Report RR5210-, INRIA, May 2004.
http://www-evasion.imag.fr/Publications/2004/LDN04.

courses.ece.uiuc.edu/ece498/al/lectures/lecture8-9-hardware.ppt
courses.ece.uiuc.edu/ece498/al/lectures/lecture8-9-hardware.ppt
http://portal.acm.org/ft_gateway.cfm?id=282285
http://www-evasion.imag.fr/Publications/2004/LDN04

200

[Lev88]

[Levo0]

[LGS*09]

[LHO4]

[LHO6]

[LHJ99]

[LHNO5a]

[LHNOSb]

[LK10]

[LKHWOS5]

[LKS*06]

[LL94]

[LLYO06]

[LMKO3]

[LNO3]

[LSK*06]

Marc Levoy. Display of surfaces from volume data. IEEE Computer Graphics and
Applications, 8:29-37, May 1988.

Marc Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics,
9:245-261, July 1990.

C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha. Fast BVH
Construction on GPUs. Computer Graphics Forum, 28(2):375-384, 2009.

Frank Losasso and Hugues Hoppe. Geometry clipmaps: terrain rendering using nested
regular grids. In SIGGRAPH, pages 769-776, 2004.

Sylvain Lefebvre and Hugues Hoppe. Perfect spatial hashing. In SIGGRAPH, pages
579-588, 2006.

Eric LaMar, Bernd Hamann, and Kenneth I. Joy. Multiresolution techniques for inter-
active texture-based volume visualization. In Proceedings of Visualization (VIS), pages
355-361, 1999.

Sylvain Lefebvre, Samuel Hornus, and Fabrice Neyret. GPU Gems 2 - Programming
Techniques for High-Performance Graphics and General-Purpose Computation, chap-
ter "Octree Textures on the GPU", pages 595-613. Addison Wesley, 2005.

Sylvain Lefebvre, Samuel Hornus, and Fabrice Neyret. Texture sprites: Texture ele-
ments splatted on surfaces. In ACM-SIGGRAPH Symposium on Interactive 3D Graph-
ics (I13D), April 2005.

Samuli Laine and Tero Karras. Efficient sparse voxel octrees. In Proceedings of ACM
SIGGRAPH 2010 Symposium on Interactive 3D Graphics and Games, pages 55-63,
2010.

Aaron E. Lefohn, Joe M. Kniss, Charles D. Hansen, and Ross T. Whitaker. A stream-
ing narrow-band algorithm: interactive computation and visualization of level sets. In
ACM SIGGRAPH 2005 Courses, 2005.

Aaron Lefohn, Joe M. Kniss, Robert Strzodka, Shubhabrata Sengupta, and John D.
Owens. Glift: Generic, Efficient, Random-Access GPU Data Structures. ACM Trans-
actions on Graphics, 25(1), 2006.

Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear-warp factor-
ization of the viewing transformation. In SIGGRAPH, pages 451458, 1994,

Patric Ljung, Claes Lundstrom, and Anders Ynnerman. Multiresolution interblock in-
terpolation in direct volume rendering. In Eurographics/IEEE-VGTC Symposium on
Visualization, 2006.

Wei Li, Klaus Mueller, and Arie Kaufman. Empty space skipping and occlusion clip-
ping for texture-based volume rendering. In Proceedings of IEEE Visualization (VIS),
page 42, 2003.

Sylvain Lefebvre and Fabrice Neyret. Pattern based procedural textures. In ACM-
SIGGRAPH Symposium on Interactive 3D Graphics (I3D). ACM, 2003.

Aaron E. Lefohn, Shubhabrata Sengupta, Joe Kniss, Robert Strzodka, and John D.
Owens. Glift: Generic, efficient, random-access GPU data structures. ACM Transac-
tions on Graphics, 25(1), 2006.

[LSK*07]

[LZT*08]

[Max86]

[Max94]

[Max95]

[MBWO08]

[MHRO2]

[Micl1]

[Mil94]

[Mit07]

[MMMY97]

[MNOO]

[NBO4]

[NBS06]

[Ney95]

[Ney98]

201

Samuli Laine, Hannu Saransaari, Janne Kontkanen, Jaakko Lehtinen, and Timo Aila.
Incremental instant radiosity for real-time indirect illumination. In Proceedings of
EGSR, pages 277-286, 2007.

Jaakko Lehtinen, Matthias Zwicker, Emmanuel Turquin, Janne Kontkanen, Frédo Du-
rand, Francois Sillion, and Timo Aila. A meshless hierarchical representation for light
transport. In ACM Transactions on Graphics (Proceedings of SIGGRAPH 2008), vol-
ume 27, 2008.

Nelson Max. Light diffusion through clouds and haze. Computer Vision, Graphics,
and Image Processing, 33(3), 1986.

Nelson L. Max. Efficient Light Propagation for Multiple Anisotropic Volume Scatter-
ing. In Fifth Eurographics Workshop on Rendering, 1994.

Nelson Max. Optical models for direct volume rendering. IEEE Transactions on Visu-
alization and Computer Graphics, 1(2):99-108, 1995.

Oliver Mattausch, Jifi Bittner, and Michael Wimmer. Chc++: Coherent hierarchi-
cal culling revisited. Computer Graphics Forum (Proceedings Eurographics 2008),
27(2):221-230, April 2008.

K. Engel M. Hadwiger, J.M. Kniss and C. Rezksalama. High-quality volume graphics
on consumer pc hardware. In SIGGRAPH, Course Notes 42, 2002.

Microsoft. Official DirectX developer website and technical documentation. http:
//msdn.microsoft.com/en-us/directx, 2011.

Gavin S. P. Miller. Efficient algorithms for local and global accessibility shading. In
SIGGRAPH, pages 319-326, 1994.

Martin Mittring. Finding next gen: Cryengine 2. In ACM SIGGRAPH 2007 courses,
SIGGRAPH 07, pages 97-121, New York, NY, USA, 2007. ACM.

Torsten Moller, Raghu Machiraju, Klaus Mueller, and Roni Yagel. A comparison of
normal estimation schemes. In Proceedings of VIS (IEEE Conference on Visualiza-
tion), pages 19—, 1997.

A. Meyer and F. Neyret. Multiscale shaders for the efficient realistic rendering of
pine-trees. In Proceedings of GI (Graphics Interface), 2000.

S. Nirenstein and E. Blake. Hardware accelerated aggressive visibility preprocessing
using adaptive sampling. In Rendering Techniques 2004: Proceedings of the 15th
symposium on Rendering, pages 207-216, 2004.

Diego Nehab, Joshua Barczak, and Pedro V. Sander. Triangle order optimization for
graphics hardware computation culling. In ACM SIGGRAPH 2006 Sketches, 2006.

Fabrice Neyret. Animated texels. In Computer Animation and Simulation *95, pages
97-103. Eurographics, September 1995. ISBN 3-211-82738-2.

Fabrice Neyret. Modeling, animating, and rendering complex scenes using volumetric
textures. Visualization and Computer Graphics, IEEE Transactions on, 4(1):55 -70,
1998.

http://msdn.microsoft.com/en-us/directx
http://msdn.microsoft.com/en-us/directx

202

[NeyO03]

[Ney06]

[NSWO09]

[NVIa]

[NVIb]

[NVIO9]

[NVIlla]

[NVI11b]
[NVI11c]
[Nyq28]

[OBMOO0]

[O1i08]

[OM90]

[ONO97]

[PBFJO5]

[PBMHO02]

[Pea85]

[Per85a]

[Per85b]

[PFO5]

Fabrice Neyret. Advected textures. In ACM-SIGGRAPH/EG Symposium on Computer
Animation (SCA), july 2003.

Fabrice Neyret. Créer, simuler, explorer des univers naturels sur ordinateur. http:
//www-evasion.imag. fr/Publications/2006/Ney06, 2006. invited paper.

Greg Nichols, Jeremy Shopf, and Chris Wyman. Hierarchical image-space radiosity
for interactive global illumination. Computer Graphics Forum (Proc. EGSR), 28(4),
2000.

NVIDIA. NVIDIA developer web site. http://developer.nvidia.com.

NVIDIA. NVIDIA GeForce 8800 Technical Brief. http://www.nvidia.com/page/
8800_tech_briefs.html.

NVIDIA. Alternative rendering pipelines on nvidia cuda, 2009.

NVIDIA. CUDA Programming Guide 4.0. http://developer.download.
nvidia.com/compute/cuda/4_0/toolkit/docs/NVIDIA_CUDA_Programming_
Guide_4.0.pdf, 2011.

NVIDIA. CUDA Programming Guide 4.0. 2011.
NVIDIA. Optix interactive ray-tracing engine for the gpu, 2011.

H. Nyquist. Certain topics in telegraph transmission theory. American Institute of
Electrical Engineers, Transactions of the, 47(2):617 —644, 1928.

Manuel M. Oliveira, Gary Bishop, and David McAllister. Relief texture mapping. In
SIGGRAPH, pages 359-368, 2000.

Jon Olick. Next generation parallelism in games. In ACM SIGGRAPH 2008 classes,
pages 21:1-21:89, 2008.

Masataka Ohta and Mamoru Maekawa. Ray-bound tracing for perfect and efficient
anti-aliasing. The Visual Computer, 6:125-133, May 1990.

M. Olano and M. North. Normal distribution mapping. Univ. of North Carolina Com-
puter Science Technical Report 97-041, 1997.

Serban D. Porumbescu, Brian Budge, Louis Feng, and Kenneth 1. Joy. Shell maps. In
SIGGRAPH, pages 626—633, 2005.

Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray tracing on pro-
grammable graphics hardware. ACM Transactions on Graphics, 21(3):703-712, July
2002. (Proceedings of ACM SIGGRAPH 2002).

Darwyn R. Peachey. Solid texturing of complex surfaces. In Proceedings of SIG-
GRAPH 85, pages 279-286, 1985.

Ken Perlin. An image synthesizer. In Proceedings of SSIGGRAPH 85, pages 287-296,
1985.

Ken Perlin. An image synthesizer. In SIGGRAPH, pages 287-296, 1985.

Matt Pharr and Randima Fernando. GPU Gems 2. 2005.

http://www-evasion.imag.fr/Publications/2006/Ney06
http://www-evasion.imag.fr/Publications/2006/Ney06
http://developer.nvidia.com
http://www.nvidia.com/page/8800_tech_briefs.html
http://www.nvidia.com/page/8800_tech_briefs.html
http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/NVIDIA_CUDA_Programming_Guide_4.0.pdf
http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/NVIDIA_CUDA_Programming_Guide_4.0.pdf
http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/NVIDIA_CUDA_Programming_Guide_4.0.pdf

[PH89]

[Pho75]

[PKGH]

[PNO1]

[POO7]

[Pur04]

[REO02]

[REG*09]

[RGK™*08]

[RGS09]

[RGW*03]

[RKEOQO]

[RMMDO04]

[RPVI93]

[RSEB*00]

[SA08]

203

K. Perlin and E. M. Hoffert. Hypertexture. In SIGGRAPH, pages 253-262, 1989.

Bui Tuong Phong. Illumination for computer generated pictures. Communications of
the ACM, 18(6):311-317, 1975.

Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan. In Proceedings of SIG-
GRAPH ’97.

Ken Perlin and Fabrice Neyret. Flow noise. In SIGGRAPH Sketch, page 187, Aug
2001.

Fabio Policarpo and Manuel Oliveira. GPU Gems 3, chapter 18: "Relaxed Cone Step-
ping For Relief Mapping". Addison-Wesley, 2007.

Timothy John Purcell. Ray tracing on a stream processor. PhD thesis, 2004. Adviser-
Hanrahan, Patrick M.

Stefan Roettger and Thomas Ertl. A two-step approach for interactive pre-integrated
volume rendering of unstructured grids. In VVS : Proceedings of the IEEE symposium
on Volume visualization and graphics, pages 23-28, 2002.

Tobias Ritschel, Thomas Engelhardt, Thorsten Grosch, Hans-Peter Seidel, Jan Kautz,
and Carsten Dachsbacher. Micro-rendering for scalable, parallel final gathering. ACM
Transactions on Graphics (Proc. SIGGRAPH Asia), 28(5), 2009.

Tobias Ritschel, Thorsten Grosch, Min H. Kim, Hans-Peter Seidel, Carsten Dachs-
bacher, and Jan Kautz. Imperfect shadow maps for efficient computation of indirect
illumination. ACM Transactions on Graphics (Proc. SSIGGRAPH Asia), 27(5), 2008.

Tobias Ritschel, Thorsten Grosch, and Hans-Peter Seidel. Approximating dynamic
global illumination in image space. In Proceedings of 13D, pages 75-82, February
20009.

Stefan Roettger, Stefan Guthe, Daniel Weiskopf, Thomas Ertl, and Wolfgang Strasser.
Smart hardware-accelerated volume rendering. In VISSYM ’03: Proceedings of the
symposium on Data visualisation 2003, 2003.

S. Rottger, M. Kraus, and T. Ertl. Hardware-accelerated volume and isosurface render-
ing based on cell-projection. In Proceedings of IEEE Visualization., 2000.

Alex Reche-Martinez, Ignacio Martin, and George Drettakis. Volumetric reconstruc-
tion and interactive rendering of trees from photographs. In SIGGRAPH proceedings,
pages 720727, 2004.

H. Rushmeier, C. Patterson, and A. Veerasamy. Geometric simplification for indirect
illumination calculations. In Proceedings of Graphics Interface, pages 227-236, 1993.

C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interactive volume
on standard PC graphics hardware using multi-textures and multi-stage rasterization.
In ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware (HWWS),
2000.

Erik Sintorn and UIf Assarsson. Fast parallel GPU-sorting using a hybrid algorithm.
Journal of Parallel Distributed Compututing, 68:1381-1388, October 2008.

204

[Sam90]

[SBS06]

[Sch97]

[Sch05]

[SD95]

[SEA08]

[SFHO7]

[SGGO8]

[Shpl1]
[SIPO6]

[SjCC*02]

[SKS02]

[SM4]

[Spe08]

[SS10]

[SSKEOS]

[ST90]

Hanan Samet. Applications of spatial data structures: Computer graphics, image pro-
cessing, and GIS. Addison-Wesley Longman Publishing Co., Inc., 1990.

Dirk Staneker, Dirk Bartz, and Wolfgang Straler. Occlusion-driven scene sorting for
efficient culling. In Afrigaph, pages 99-106, 2006.

Andreas Schilling. Towards real-time photorealistic rendering: challenges and solu-
tions. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graph-
ics hardware, pages 7-15, 1997.

Henning Scharsach. Advanced GPU raycasting. In Central European Seminar on
Computer Graphics, pages 69-76, 2005.

Francois Sillion and George Drettakis. Feature-based control of visibility error: A
multi-resolution clustering algorithm for global illumination. In Proceedings of SIG-
GRAPH, volume 29, pages 145152, August 1995.

Erik Sintorn, Elmar Eisemann, and UIf Assarsson. Sample based visibility for soft
shadows using alias-free shadow maps. Computer Graphics Forum (Proc. EGSR),
27(4):1285-1292, June 2008.

Rajagopalan Srinivasan, Shiaofen Fang, and Su Huang. Volume rendering by template-
based octree projection, 1997.

Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System Con-
cepts. Wiley Publishing, 8th edition, 2008.

Shpagin, Andrew. 3d-coat : A voxel scultping software, 2011.

Benjamin Segovia, Jean-Claude Iehl, and Bernard Peroche. Bidirectional instant ra-
diosity. In Proceedings of EGSR, June 2006.

Claudio Silva, Yi jen Chiang, Wagner Correa, Jihad El-sana, and Peter Lindstrom.
Out-of-core algorithms for scientific visualization and computer graphics. In In Visu-
alization’02 Course Notes, 2002.

Peter-Pike J. Sloan, Jan Kautz, and John Snyder. Precomputed radiance transfer for
real-time rendering in dynamic, low-frequency lighting environments. ACM Transac-
tions on Graphics (Proc. SIGGRAPH), 21(3):527-536, 2002.

SM4. Shader model 4 opengl specification.

http://developer.download.nvidia.com/opengl/specs/GL_EXT_gpu_shader4.txt .

Scott Spencer. ZBrush Character Creation: Advanced Digital Sculpting. SYBEX Inc.,
pap/dvdr edition, 2008.

Michael Schwarz and Hans-Peter Seidel. Fast parallel surface and solid voxelization
on GPUs. In ACM SIGGRAPH Asia 2010 papers, pages 179:1-179:10, 2010.

S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A simple and flexible volume ren-
dering framework for graphics-hardware-based raycasting. In Volume Graphics, 2005.
Fourth International Workshop on, pages 187-241, June 2005.

Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of 3-D shapes.
Computer Graphics (Proc. SIGGRAPH), 24(4):197-206, 1990.

http://developer.download.nvidia.com/opengl/specs/GL_EXT_gpu_shader4.txt

[STN87]

[TanO8]

[TLO4]

[TLQ"]

[TMJ98]

[TNF89]

[TokO05]

[TSO5]

[TWTT99]

[TZL*02]

[VSEO6]

[Wal04]

[WBO05]

[WBB*07]

[WBZC*10]

[WDSO05]

205

Mikio Shinya, T. Takahashi, and Seiichiro Naito. Principles and applications of pencil
tracing. In Proceedings of SIGGRAPH ’87, pages 45-54, 1987.

Andrew S. Tanenbaum. Modern Operating Systems. Prentice-Hall, 3. edition, 2008.

Eric Tabellion and Arnauld Lamorlette. An approximate global illumination system
for computer generated films. In Proceedings of SIGGRAPH, pages 469-476, 2004.

Ping Tan, Stephen Lin, Long Quan, Baining Guo, and Heung-Yeung Shum. Multires-
olution reflectance filtering. In EGSR’05 Rendering Techniques, pages 111-116.

Christopher C. Tanner, Christopher J. Migdal, and Michael T. Jones. The clipmap: a
virtual mipmap. In SIGGRAPH ’98: Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, pages 151-158, 1998.

D. Thomas, Arun N. Netravali, and D.S. Fox. Anti-aliased ray tracing with covers.
Computer Graphics Forum, 8(4):325-336, 1989.

Michael Toksvig. Mipmapping normal maps. journal of graphics, gpu, and game
tools, 10(3):65-71, 2005.

Niels Thrane and Lars Ole Simonsen. A comparison of acceleration structures for GPU
assisted ray tracing. Technical report, 2005.

X Tong, WP Wang, WW Tsang, and Z Tang. Efficiently rendering large volume data
using texture mapping hardware. In IEEE TVCG Symposium on Visualization Pro-
ceedings, 1999.

Xin Tong, Jingdan Zhang, Ligang Liu, Xi Wang, Baining Guo, and Heung-Yeung
Shum. Synthesis of bidirectional texture functions on arbitrary surfaces. ACM Trans-
actions on Graphics, 21(3):665-672, 2002. (Proceedings of ACM SIGGRAPH 2002).

J. E. Vollrath, T. Schafhitzel, and T. Ertl. Employing Complex GPU Data Structures
for the Interactive Visualization of Adaptive Mesh Refinement Data. In Proceedings
of Eurographics | IEEE VGTC Workshop on Volume Graphics, 2006.

Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD thesis,
Saarland University, 2004.

Michael Wimmer and Jiii Bittner. GPU Gems 2 - Programming Techniques for High-
Performance Graphics and General-Purpose Computation, chapter "Hardware Occlu-
sion Queries Made Useful", pages 91-108. 2005.

Michael Wand, Alexander Berner, Martin Bokeloh, Arno Fleck, Mark Hoffmann,
Philipp Jenke, Benjamin Maier, Dirk Staneker, and Andreas Schilling. Interactive edit-
ing of large point clouds. In Symposium on Point-Based Graphics 2007 : Eurographics
/IEEE VGTC Symposium Proceedings, pages 37-46, 2007.

Magnus Wrenninge, Nafees Bin Zafar, Jeff Clifford, Gavin Graham, Devon Penney,
Janne Kontkanen, Jerry Tessendorf, and Andrew Clinton. Volumetric methods in vi-
sual effects. In Course Notes - SIGGRAPH, 2010.

Ingo Wald, Andreas Dietrich, and Philipp Slusallek. An interactive out-of-core render-
ing framework for visualizing massively complex models. In ACM SIGGRAPH 2005
Courses, 2005.

206

[WE98]

[Wes90]

[WFA*05]

[Whi80]

[Whi09]
[Wik]

[Wik11]
[Wil83]

[Wil05]

[WKB*02]

[WMO92]

[WMG*07]

[WPSAM10]

[WSBWO1]

[WWH*00]

[WWSO01]

[WZF*03]

Riidiger Westermann and Thomas Ertl. Efficiently using graphics hardware in volume
rendering applications. In Proceedings of SIGGRAPH ’98, pages 169-177, 1998.

Lee Westover. Footprint evaluation for volume rendering. In Proceedings of SIG-
GRAPH ’90, pages 367-376, 1990.

Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian, and
Donald P. Greenberg. Lightcuts: A scalable approach to illumination. ACM Transac-
tions on Graphics (Proc. SIGGRAPH), 24(3):1098-1107, 2005.

Turner Whitted. An improved illumination model for shaded display. Communications
of the ACM, 23:343-349, June 1980.

Daniel White. The real 3d mandelbulb, 2009.

Wikipedia. Z-buffering algorithm description. http://en.wikipedia.org/wiki/
Z-buffering.

Wikipedia. Amdahl’s law, 2011.

Lance Williams. Pyramidal parametrics. In Proceedings of SIGGRAPH 83, pages
1-11, 1983.

Donnelly William. GPU Gems 2, chapter "Per-Pixel Displacement Mapping with Dis-
tances Functions", pages 123-136. 2005.

Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller, and Philipp Slusallek.

Interactive global illumination using fast ray-tracing. In Proceedings of EGRW, pages
15-24, 2002.

Peter L. Williams and Nelson Max. A volume density optical model. In VVS: Pro-
ceedings of the workshop on Volume visualization, 1992.

Ingo Wald, William R. Mark, Johannes Giinther, Solomon Boulos, Thiago 1ze, War-
ren Hunt, Steven G. Parker, and Peter Shirley. State of the art in ray tracing animated
scenes. In STAR Proceedings of Eurographics 2007, pages 89—116, September 2007.

H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. Demystify-
ing GPU microarchitecture through microbenchmarking. In Performance Analysis of
Systems Software (ISPASS), 2010 IEEE International Symposium on, pages 235 —246,
march 2010.

Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner. Interactive dis-
tributed ray tracing of highly complex models. In Proceedings of the 12th Eurographics
Workshop on Rendering Techniques, pages 277-288, 2001.

Manfred Weiler, Riidiger Westermann, Chuck Hansen, Kurt Zimmermann, and
Thomas Ertl. Level-of-detail volume rendering via 3d textures. In Proceedings of
the 2000 IEEE symposium on Volume visualization, pages 7—-13, 2000.

Michael Wimmer, Peter Wonka, and Francois X. Sillion. Point-based impostors for
real-time visualization. In Proceedings of the 12th Eurographics Workshop on Render-
ing Techniques, pages 163176, 2001.

Xiaoming Wei, Ye Zhao, Zhe Fan, Wei Li, Suzanne Yoakum-Stover, and Arie Kauf-
man. Blowing in the wind. In SCA: Proceedings of the 2003 ACM SIGGRAPH/Euro-
graphics symposium on Computer animation, pages 7585, 2003.

http://en.wikipedia.org/wiki/Z-buffering
http://en.wikipedia.org/wiki/Z-buffering

[YCK*09]

[YS93]

[ZHR*09]

[ZMHH97]

[ZTTS06]

207

I. Yu, A. Cox, M. H. Kim, T. Ritschel, T. Grosch, C. Dachsbacher, and J. Kautz.
Perceptual influence of approximate visibility in indirect illumination. In ACM Trans-
actions on Applied Perception (Proc. APGV), pages 24:1-24:14, 2009.

Roni Yagel and Zhouhong Shi. Accelerating volume animation by space-leaping. In
Proceedings of the 4th conference on Visualization 93, pages 62—-69, 1993.

Kun Zhou, Qiming Hou, Zhong Ren, Minmin Gong, Xin Sun, and Baining Guo. Ren-
derants: interactive reyes rendering on gpus. In ACM SIGGRAPH Asia 2009 papers,
pages 155:1-155:11, 2009.

Hansong Zhang, Dinesh Manocha, Tom Hudson, and Kenneth E. Hoff, III. Visibility
culling using hierarchical occlusion maps. In Proceedings of SIGGRAPH ’97, pages
77-88, 1997.

G. Ziegler, A. Tevs, C. Theobalt, and H.-P. Seidel. GPU point list generation through
histogram pyramids. In Proceedings of VMV, pages 137-141, 2006.

	1 Introduction and motivation
	1.1 Motivation: Real-time rendering of large and complex scenes
	1.1.1 Limits of current mesh-based rendering approaches
	1.1.2 Voxel-based approach to geometry pre-filtering

	1.2 Other applications and usage of voxel representations
	1.2.1 Voxels for volumetric materials and effects
	1.2.2 Voxels in special effects
	1.2.3 Scan and simulation data
	1.2.4 Voxels as an intermediary representation for authoring

	1.3 GPU development
	1.3.1 Hardware generations
	1.3.2 Compute mode
	1.3.3 Limited video memory, limited bandwidth from the CPU
	1.3.4 Memory regions
	1.3.5 Increasing gap between memory access speed and processing power

	1.4 Problems and objectives
	1.4.1 Problems with voxel-based rendering
	1.4.2 Target scenes
	1.4.3 Objectives

	1.5 Contributions

	2 Related work
	2.1 Anti-aliasing filtering
	2.1.1 Geometry anti-aliasing filtering
	2.1.2 Texture filtering

	2.2 Volume representations in Computer Graphics
	2.2.1 Adding details and realistic appearance
	2.2.2 Octree textures : sparse solid-texturing
	2.2.3 Brick maps

	2.3 Volume rendering for scientific visualization
	2.3.1 Physics of volume light transport
	2.3.2 Main volume rendering approaches

	2.4 Managing the complexity: Representations and algorithms
	2.4.1 Rendering
	2.4.2 Spatial data structures
	2.4.3 Visibility culling
	2.4.4 Multiresolution rendering approaches for volume rendering

	2.5 Out-of-core data management
	2.5.1 Caching : Virtual memory based paging systems
	2.5.2 Texture streaming
	2.5.3 Out-of-core scientific visualization

	I Contributions: core model
	3 The GigaVoxels rendering pipeline
	3.1 Global scheme
	3.2 Overview
	3.3 Technological choices
	3.3.1 Preliminary GPU performance characterization

	4 Volumetric geometry representation and pre-integrated cone tracing
	4.1 Overview
	4.2 Pre-integrated cone tracing
	4.2.1 Volume pre-integration theory
	4.2.2 Discrete composition scheme
	4.2.3 World-space definition

	4.3 MIP-map pre-integration model
	4.3.1 Quadrilinear interpolation
	4.3.2 Cone-shaped beams

	4.4 The decorrelation hypothesis
	4.4.1 Decorrelation of densities along a beam
	4.4.2 Impact of the correlation
	4.4.3 Typical cases

	4.5 Pre-filtering shading parameters : toward a multiresolution reflectance model
	4.5.1 Material parameters
	4.5.2 Simple normal distribution function
	4.5.3 Local shading model

	4.6 Practical implementation of the model
	4.6.1 Initial voxelization of surface geometry
	4.6.2 Isotropic and anisotropic voxel representations
	4.6.3 Compact isotropic voxels
	4.6.4 Anisotropic voxels for improved cone-tracing

	4.7 Conclusion

	5 Data Structure
	5.1 The octree-based voxel MIP-map pyramid: A sparse multi-resolution structure
	5.1.1 Octree + Bricks representation
	5.1.2 Constant regions and frequency-based compression
	5.1.3 The N3-tree : A Generalized Octree
	5.1.4 The bricks

	5.2 GPU implementation
	5.2.1 Structure storage: the pools
	5.2.2 Octree nodes encoding

	5.3 Structure characteristics

	6 Rendering
	6.1 Hierarchical volume ray-casting
	6.1.1 Global scheme
	6.1.2 Traversing the structure
	6.1.3 GPU scheduling and traversal efficiency
	6.1.4 Descending in the Octree
	6.1.5 Brick marching
	6.1.6 Empty or constant space skipping

	6.2 Integration with traditional CG scenes
	6.3 Performance analysis
	6.3.1 Performance comparison with rasterization
	6.3.2 Rendering costs and silhouettes

	7 Out-of-core data management
	7.1 Overview and contributions
	7.1.1 Application controlled demand paging on the GPU
	7.1.2 Details on our approach

	7.2 Multi-pass update scheme and progressive refinement
	7.2.1 Top-down refinement
	7.2.2 Update strategies

	7.3 A High Performance GPU Cache for graphics applications
	7.3.1 Cache structure and storage
	7.3.2 Building GigaVoxels data structures based on cached storages
	7.3.3 Interface with the cache
	7.3.4 LRU replacement policy
	7.3.5 Managing data requests
	7.3.6 Parallel data load
	7.3.7 LRU invalidation procedure
	7.3.8 Application specific optimizations

	7.4 Handling data requests : Voxel producers
	7.4.1 Managing multiple objects
	7.4.2 Writing into texture pools
	7.4.3 GPU load producer
	7.4.4 Loading from disk and system memory caching
	7.4.5 Examples of dynamically loaded datasets
	7.4.6 GPU procedural and mixed producers

	7.5 Results and performance analysis
	7.5.1 Repartition of the costs per frame
	7.5.2 Cache efficiency
	7.5.3 Comparison with CPU-based transfers
	7.5.4 Comparison with CPU-based LRU management
	7.5.5 Out-of-core ray-tracing of triangle scenes

	II Contributions: Applications of the model
	8 Direct applications
	8.1 Octree-based synthesis
	8.2 Voxel object instancing
	8.3 MipMap-based blur effects
	8.3.1 Soft shadows
	8.3.2 Depth-of-field

	9 Interactive Indirect Illumination Using Voxel Cone Tracing
	9.1 Introduction
	9.2 Previous Work
	9.3 Algorithm overview
	9.4 Our hierarchical voxel structure
	9.4.1 Structure description
	9.4.2 Interactive voxel hierarchy construction
	9.4.3 Voxel representation

	9.5 Ambient Occlusion
	9.6 Voxel Shading
	9.7 Indirect Illumination
	9.7.1 Two-bounce indirect illumination
	9.7.2 Capturing direct Illumination

	9.8 Results and discussion
	9.9 Conclusion

	III Conclusion
	10 Conclusions and perspectives

	IV Appendix
	A Preliminary GPU performance characterization
	A.1 Characterizing texture cache behavior
	A.2 Rasterization and scheduling of fragment shading
	A.2.1 Motivations
	A.2.2 Methodology
	A.2.3 Summary of our "interpretations and discoveries"

