
Eurographics Symposium on Rendering (2007)

Jan Kautz and Sumanta Pattanaik (Editors)

Whitted Ray-Tracing for Dynamic Scenes

using a Ray-Space Hierarchy on the GPU

D. Roger1 U. Assarsson2 N. Holzschuch1

1ARTIS/INRIA Grenoble University 2Chalmers University of Technology

Abstract

In this paper, we present a new algorithm for interactive rendering of animated scenes with Whitted Ray-Tracing,

running on the GPU. We focus our attention on the secondary rays (the rays generated by one or more bounces on

specular objects), and use the GPU rasterizer for primary rays. Our algorithm is based on a ray-space hierarchy,

allowing us to handle truly dynamic scenes without the need to rebuild or update the scene hierarchy. The ray-

space hierarchy is entirely built on the GPU for every frame, using a very fast process. Traversing the ray-space

hierarchy is also done on the GPU; one of the benefits of using a ray-space hierarchy is that we have a single

shader, and a fixed number of passes. After traversing each level of the hierarchy, we prune empty branches using

a stream reduction method. We present two different stream reduction methods, a fast one using a hierarchical

algorithm, and an easy one using the Geometry shaders. Our algorithm results in interactive rendering with

specular reflections and shadows for moderately complex scenes (∼ 700K triangles), handles any kind of dynamic

or unstructured scenes without any pre-processing, and scales well with both the scene complexity and the image

resolution.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Graphics processors I.3.7

[Computer Graphics]: Raytracing

1. Introduction

Global illumination methods for image synthesis start with

the description of a virtual scene (its geometrical and mate-

rial properties) and compute a picture of the scene as seen

from a virtual observer. Among global illumination meth-

ods, Whitted ray-tracing [Whi80] uses ray-tracing [App68]

to simulate reflections on specular objects. Ray-tracing and

Whitted ray-tracing have been the object of many research,

and are now widely used for production of photorealistic

images. Several papers describe real-time or interactive ray-

tracing.

Specular reflections is one area where ray-traced images

typically differ from images generated with rasterization.

These effects depend on secondary rays, as opposed to the

primary rays (rays originating from the viewpoint of the

camera). Secondary rays include reflected rays (after one or

several reflections), refracted rays and shadow rays. While

primary rays are highly coherent, making it easier to opti-

mize the computations, e.g. using caching schemes together

with the scene hierarchies, secondary rays exhibit much less

coherence: two secondary rays generated from neighbour-

ing points can intersect with objects that are far away in the

scene. As a consequence, efficient computation of secondary

rays is a harder problem than for primary rays.

Most ray-tracing algorithms use a scene hierarchy to

speed up the computation of the intersection between each

ray and the objects in the scene. But with animated scenes,

the scene hierarchy must be rebuilt or updated at each frame,

a process that is slowing down the computations.

In this paper, we present a new algorithm for interactive

Whitted ray-tracing of dynamic scenes, using a ray-space hi-

erarchy that is generated and processed on the GPU at each

frame. Although our algorithm can handle all kinds of rays,

including primary rays, we have elected to focus on the sec-

ondary rays, as they are both more interesting in terms of

pictures generated and more difficult to compute. We let the

GPU handle the primary rays, using rasterization, Z-buffer

and per-pixel lighting. We also use the GPU to generate the

first set of secondary rays (the rays caused by the first bounce

on the scene), and to build a ray-space hierarchy. We then

c© The Eurographics Association 2007.

D. Roger & U. Assarsson & N. Holzschuch / Whitted Ray-Tracing for Dynamic scenes using a Ray-Space Hierarchy on the GPU

traverse this hierarchy on the GPU, starting at the root node

and descending towards the leaves, corresponding to indi-

vidual rays. For each node of the hierarchy (corresponding

to a bundle of rays), we maintain the set of triangles inter-

sected by this node. After traversing each level of the hier-

archy, the stream of triangles is pruned of its empty nodes,

using a stream reduction technique. We present two different

stream reduction methods: one that is faster and relies on a

hierarchical algorithm, and one that is easier to implement,

using the Geometry shaders.

Our algorithm runs entirely on the GPU, without any com-

munication to or from the CPU. Our experiments show that

it runs interactively, with specular reflections, for moderately

complex scenes. We can handle any kind of dynamic or un-

structured scenes without any pre-processing. Finally, our al-

gorithm scales well with both the scene complexity and the

image resolution.

Our paper is organized as follows: in the next section,

we review previous work on interactive rendering of spec-

ular reflections, interactive ray-tracing, GPU ray-tracing and

ray-space hierarchies. We then present our algorithm for ray-

tracing (section 3). A key step in our algorithm is the stream-

reduction pass, for which we have designed two possible im-

plementations; both will be discussed in section 4. Finally,

we present our results in section 5, then conclude and present

directions for future work.

2. Previous work

Ray-casting was formally introduced by Appel [App68]

as a technique for visible surface determination. Whit-

ted [Whi80] used ray-casting for the generation of photoreal-

istic images (including recursive specular reflections). Ray-

tracing has been the subject of intensive research, dealing

with efficient acceleration methods: scene hierarchies, effi-

cient parallel implementations or caching schemes.

We focus here on the previous work related to real-time or

interactive ray-tracing, ray-space hierarchies and GPU ray-

tracing. We also review methods for approximate specular

reflections on the GPU.

Real-time and Interactive ray-tracing For a state of the

art in interactive ray tracing, we refer the reader to Wald and

Slusallek [WS01]. In recent years, several papers used a k-

D tree for the scene hierarchy [RSH05, HSHH07]. For dy-

namic scenes, however, Wald et al. [WIK∗06] showed that

construction and updates of k-D trees can significantly slow

down the rendering process. To overcome this limitation,

they used a grid-based hierarchy; Ize et al. [IRWP06] stud-

ied different parallel algorithms for the efficient construction

of this grid hierarchy.

Lauterbach et al. [LYTM06] and Wald et al. [WBS07]

used a Bounding Volume Hierarchy (BVH) for interactive

ray-tracing of dynamic scenes. BVHs are easier to compute

and update than k-D trees for dynamic scenes. Eisemann et

al. [EGMM07] presented two methods for fast updates of

BVHs. Wächter and Keller [WK06] presented a new data

structure, the Bounding Interval Hierarchy (BIH), that is

both fast to rebuild or update on dynamic scenes and effi-

cient for traversal.

Ray-space hierarchies Amanatides [Ama84] suggested

grouping rays together for faster rendering and more real-

istic effects; he traced cones instead of rays, and used them

for soft shadows and glossy reflections. He also used a hier-

archy of cones for faster tracing of primary rays. Hanrahan

and Heckbert [HH84] used beam tracing for more accurate

ray-tracing and anti-aliasing, but without a hierarchical rep-

resentation. Arvo and Kirk [AK87] created a complete hier-

archy in 5-dimensional ray-space; rays were grouped in 5D

hypercubes, resulting in faster ray-tracing. Ghazanfarpour

and Hasenfratz [GH98] used hierarchical polyhedral beams

of rays for faster tracing of primary and shadow rays. Naka-

maru and Ohno [NO97, NO02] introduced breadth-first ray-

tracing, where they keep the rays in memory and process the

objects sequentially.

Chung and Field [CF99] have combined a ray-space hier-

archy with a scene hierarchy for faster rendering. Similarly,

Reshetov et al. combined a ray-space hierarchy on the pri-

mary rays with a k-D tree scene hierarchy.

GPU-based Ray Tracing Carr et al. [CHH02] made the ob-

servation that ray-casting is a crossbar on rays and primi-

tives, while pixel shading is a crossbar on pixels and prim-

itives. They devised a method to use the pixel shading

crossbar to compute ray-triangle intersections. Purcell et

al. [PBMH02] ported the entire ray-tracing algorithm, us-

ing a grid for the scene hierarchy, tracing one ray per pixel.

Because of the complexity of the ray-tracing algorithm, they

had to use four different pixel shaders: for ray spawning, ray

traversal, ray-triangle intersection and shading. Combined

with the fact that the rays are in different phases, this lim-

its their peak GPU performance to 10 % [CHCH06]. Further

research have extended this work [Chr04, KL04, TS05], but

all suffer from the same drawback and do not exploit the full

GPU performance.

Ernst et al. [EVG04] used a scene hierarchy based on a

k-D tree, but they required a fixed maximum stack depth.

Foley and Sugerman [FS05] extended this algorithm to a

stack-less traversal; they report 20 % GPU efficiency. Horn

et al. [HSHH07] ported [FS05] to run in a single shader pass,

using GPU branching and looping.

Thrane and Simonsen [TS05] and Carr et al. [CHCH06]

used a Bounding Volume Hierarchy instead of a k-D tree.

Carr et al. [CHCH06] stored their BVH as a hierarchical ge-

ometry image.

Szécsi [Szé06] used a two-level ray-space hierarchy to

trace refraction rays on the GPU. The first level of the hi-

c© The Eurographics Association 2007.

D. Roger & U. Assarsson & N. Holzschuch / Whitted Ray-Tracing for Dynamic scenes using a Ray-Space Hierarchy on the GPU

erarchy is processed by the vertex shader, and the second

level by the fragment shader.

Our work shares common points with several of these

previous work. Like Horn et al. [HSHH07], we use the

programmable pixel shader to handle the primary rays,

and we only trace the secondary rays, but we use a ray-

space hierarchy instead of a k-D tree scene hierarchy. Like

Szécsi [Szé06], we use a ray-space hierarchy, but we build

the complete hierarchy, as opposed to only the bottom two

levels.

Specular reflections on the GPU Roger and

Holzschuch [RH06], Estallela et al. [EMDT06] and

Szirmay-Kalos et al. [SKALP05] compute approximate

specular reflections on the GPU, searching for optical paths

of extremal length. Our work differs from these, as we are

computing a full Whitted ray-tracing solution, without any

approximation.

3. Algorithm

3.1. Overview

Our algorithm works the following way:

1. Render the scene, with non-specular direct lighting ef-

fects;

2. Generate the first set of secondary rays;

3. Build the ray-space hierarchy from these rays;

4. Intersect the ray-space hierarchy with the scene:

a. maintain a stream of (hierarchy nodes, triangles).

b. recursively subdivide the nodes,

c. discard irrelevant triangles,

5. Final ray-triangle intersection and shading.

The first step is done using a standard rasterizer, with

pixel-based lighting (using fragment shaders). The same

shader also outputs the first set of secondary rays in a sep-

arate render target, with their starting point and direction.

The rays are indexed by the corresponding fragment posi-

tion. Building the ray-space hierarchy is then a fast step, en-

tirely done on the GPU (see Section 3.2), for each frame, at

a cost of ≈ 2 ms for a resolution of 1024×1024.

Intersecting this ray-space hierarchy with the scene is the

core of the algorithm (see Section 3.3). Each node in the

hierarchy represents a bundle of rays. We compute the set

of triangles whose bounding sphere intersects this bundle.

We start with the triangles intersecting the root node, and

descend along the hierarchy.

At the end of the hierarchy traversal, for each ray in the

original set, we have the set of triangles whose bounding

sphere it intersects. In a final pass, we compute the actual

ray-triangles intersection, keep the closest intersection, com-

pute its shading and output the corresponding fragment.

C

d

α

Figure 1: We use a cone-sphere structure for our ray-space

hierarchy. Each node is defined by a sphere and a cone.

Figure 2: The parent node is constructed as the enclosing

cone-sphere for the four children.

GPUs are not well adapted to hierarchical data struc-

tures. They are, in essence, SIMD machines and for opti-

mal results, neighbouring fragments should run in the same

branching conditions, in contradiction with the nature of hi-

erarchical computations. We resolved this issue by separat-

ing the hierarchy traversal in two passes: the first pass runs

the same shader on all data entries, with a fixed number of

operations and a fixed number of outputs. In a second pass,

we delete irrelevant outputs, reducing the size of the working

buffer. This deletion pass is called a stream reduction pass,

and it is essential to our algorithm. We have designed two

different stream reduction methods (see Section 4): a fast,

hierarchical method using fragment shaders, and an easy-to-

implement method using geometry shaders.

3.2. Building and storing the ray hierarchy

The first step in our algorithm is building the ray hierarchy.

Our algorithm can work with any kind of ray hierarchy, such

as polyhedral beams or cones of rays. For practical reasons,

…

Figure 3: We start with the set of secondary rays, and recur-

sively build the enclosing cone-sphere for each hierarchical

level.

c© The Eurographics Association 2007.

D. Roger & U. Assarsson & N. Holzschuch / Whitted Ray-Tracing for Dynamic scenes using a Ray-Space Hierarchy on the GPU

Stream

reduction

triID, coneID

(a) (b)

…
…

triID, coneID for next level

The output is used as input

to the next ray hierarchy level

Each level is used one by

one as input for executing

one traversal step for all

triangles down the ray

hierarchy
Ray-triangle intersection

+ shading

after traversal

of all levels

Figure 4: Traversing the ray hierarchy: after the construction of the ray hierarchy, we store each scene-triangle in a texture,

so that each texel contains a triangle ID and the cone ID of the root node. In step (a), we send this information to the fragment

shader, which computes the intersections of the bounding sphere of the triangle with the four children cones, each one being

bound to a separate render target. If the intersection is not empty, the shader outputs the cone index of the child together with

the triangle ID, and otherwise a null node. In step (b), we remove all the null nodes using stream reduction and merge the results

into a single texture, used as input for the next level. Steps (a) and (b) are repeated once for each level down the hierarchy. The

final output contains, for each ray, the ID of all triangles whose bounding sphere it intersects.

we have elected to use a combination of a cone and a sphere

(see Figure 1). We define the sphere so that in encloses the

starting points of all the rays in the ray bundle, and the cone

so that it contains the sphere and includes all the rays in the

ray bundle. The efficient part of the ray bundle contains the

sphere and the part of the cone that is in front of the sphere.

The remaining part of the cone is not used for the intersec-

tions.

This structure can be stored in a very compact way, each

node requiring just 8 floats: 4 for the sphere (center and ra-

dius) and 4 for the cone (direction and spread angle, α). Note

that the 3D point we store is the center of the sphere and not

the apex of the cone. At the upper levels of the hierarchy,

the ray bundles group rays with very different directions, so

the spread angle of the cone can be larger than π2 , allowing a

cone to enclose the entire space.

The ray hierarchy is constructed bottom-up. We start with

the first set of secondary rays (rays reflected by visible spec-

ular objects). These rays are generated while rendering the

scene, using a fragment shader to output the origin and di-

rection of the ray in a separate render target. This forms the

bottom layer of the hierarchy, with the sphere radii and the

cones’ spread angle, α, equal to zero to represent the ex-

act rays. Each parent node is then created by computing the

union of the child nodes (see Figure 2). This hierarchy con-

struction is done on the GPU, in a fixed number of passes:

for each node, we access its four children and compute the

enclosing node (see Figure 3). This process is very similar

to generating mip-maps.

Our ray-space hierarchy is indexed by the screen position

of the rays. The lowest level has the same size as the screen:

each ray corresponds to a single pixel (since the specular

reflectors usually do not cover the entire screen, some pixels

in the screen do not correspond to an actual ray). We keep

this structure for the upper levels: each node in the hierarchy

corresponds to an area of the screen, and groups together the

secondary rays underlying this area. This spatial localisation

of the nodes gives us the parent-children relationship without

having to store it explicitly.

By construction, each node in our ray-space hierarchy en-

closes its four children. If a triangle does not intersect the

current node, it will not intersect any of the children either,

and can safely be discarded.

3.3. Traversing the ray hierarchy

Once we have built the ray-hierarchy, we traverse it for com-

puting the intersections of the rays with the scene triangles.

We do this in a top-down manner, for each node in the hier-

archy creating the set of triangles potentially intersected by

this node. We start with the triangles intersected by the root

node, then descend the hierarchy. Each pass updates this in-

formation for the current level of the hierarchy, then sends

the result to the next pass, working on the next level of the

hierarchy (see Figure 4).

The required information is stored in a texture, so that

each element contains the node ID and the triangle ID. Ini-

tially, the texture contains one element for each triangle in

the scene, with the ID of the triangle and the root node ID.

Each level of the hierarchy is processed in a single pass,

running the same shader on all these texture elements: for

each element, we retrieve the four cone-sphere children cor-

responding to the cone ID, the bounding sphere of the tri-

angle corresponding to the triangle ID and check their in-

tersection. For each children, we output in a separate render

target either the children ID and the triangle ID if there is an

intersection, or an empty element otherwise.

After this traversal pass, we have four textures, each of

c© The Eurographics Association 2007.

D. Roger & U. Assarsson & N. Holzschuch / Whitted Ray-Tracing for Dynamic scenes using a Ray-Space Hierarchy on the GPU

C

d

P C

d

P Pr
d

α

C

d

H

d+r

α

(a) (b) (c)

Figure 5: Testing the intersection between a node and the

bounding sphere of a triangle (a) reduces to a 2D problem

(b). It is equivalent to testing the intersection between a re-

duced cone and an enlarged sphere (c).

them with the same number of elements as the input texture,

but with many empty elements. A stream-reduction pass (de-

scribed in Section 4) removes the empty elements and packs

the textures in a single texture, used as input for the next

step.

The number of traversal passes is equal to the depth of

the hierarchy, log2 X, where X is the width of the picture in

pixels (i.e. 9 passes for a 512×512 picture).

At the end of the hierarchy traversal, we have the ID of

each initial ray, with the ID of the triangles potentially in-

tersected by this ray. We compute the actual ray-triangles

intersections, select the closest intersection point, compute

the shading and illumination and display the result.

3.3.1. Intersection between a node and a bounding

sphere

The most frequent operation in our algorithm is computing

whether the bundle of rays corresponding to a node is in-

tersecting with the bounding sphere of a triangle. Given the

symmetry of revolution, this is actually a 2D operation (see

Figure 5).

We assume that we have a ray hierarchy node defined by

a sphere (C,r) and a cone (ddd,α), and we want to check the

intersection with the bounding sphere of a triangle, defined

by its center P and its radius d.

The problem is equivalent to testing the intersection be-

tween the cone of apex C, direction ddd and spread angle α

with the sphere of center P and radius d+ r:

return

(

CH tanα+
d+ r

cosα
≥ HP

)

(1)

3.4. Memory considerations

As we traverse the ray hierarchy, our algorithm stores all the

pairs (hierarchy node, triangle) for which there is a potential

intersection. We store these pairs in a large texture (2048×

2048), where each texel contains two int16 for the indices

of the hierarchy nodes and two int16 for the indices of the

triangle.

During refinement, the total number of pairs (hierarchy

node, triangle) can get larger than the number of texels. This

happens when the ray-space hierarchy contains nodes with

a large spatial or angular extent at the lower levels. Each of

these node intersects with a large number of triangles. Large

nodes at the upper levels of the hierarchy do not cause this

problem, simply because there is a smaller number of nodes.

A single discontinuity between two different reflectors will

not cause this issue, but an irregular, bumpy or fractal reflec-

tor will.

When this happens, we implemented a simple

workaround: the scene is subdivided into batches, each

batch is processed independently and then the results are

combined. Our experiments show that the rendering time

for each batch is proportional to the number of triangles it

contains, so subdividing the scene into batches will actually

result in almost the same rendering time, except for the extra

cost for processing each batch: in our experiments, ≈ 30 ms.

With this technique, memory overflow is not predictable,

but the system can react to it at the next frame: one possible

strategy is to divide in two the batches that led to overflow.

This way, any problem disapears within a few frames on

still images.

Another straight forward workaround would be to read

back the overflowing part of the stream to the CPU and pro-

cess it in a separate batch after the current batch is fully pro-

cessed. This can create a maximum of d batches, where d

is the depth of the tree, temporarily stored on the CPU-side.

The GPU-CPU bandwidth should not be a major problem

here, since over a hundred 1024× 1024 frames can be sent

per second over the PCI Express bus.

This subdivision into batches can also be used to run our

algorithm on very large scenes: as long as a single batch can

be processed by our ray-tracing engine, there is no limit on

the size of the scene.

3.5. Other secondary rays

3.5.1. Shadow rays

Our ray-tracing engine is generic, and can handle any kind

of rays, not just the first bounce of secondary rays. We have

also used it for shadow rays (see Figure 6(c)). We know that

all shadow rays share a common termination (the point light

source). For a better efficiency, we revert the directions of

the shadow rays before computation, so that the light source

is now their common starting point. Thus, we build a very

tight ray-space hierarchy, with a null dimension in space.

3.5.2. Further light bounces

We also use our engine for further bounces (see Figure 6(b)).

When a ray hits a specular surface, we generate the reflected

ray for this pixel. We then send the set of reflected rays to our

ray-intersection engine, with the same steps as for the rays

c© The Eurographics Association 2007.

D. Roger & U. Assarsson & N. Holzschuch / Whitted Ray-Tracing for Dynamic scenes using a Ray-Space Hierarchy on the GPU

(a) 1 specular reflection (302 ms). (b) 2 specular reflections (674 ms). (c) 2 specular refl.+shadows (993 ms).

Figure 6: Our ray-tracer handles multiple reflections and shadow rays (Kitchen scene, 83K polygons, 512×512 pixels). Please

note that the entire scene is visible in the reflection. See also the color plate.

generated by the first bounce: building the ray hierarchy, in-

tersecting it with the scene. Each further bounce of light has

a computational cost, making the overall algorithm slower,

but increases the realism of the images generated.

The rays generated by further light bounces have even less

coherency than the rays generated in the first pass, making

the ray-space hierarchy looser. However, our algorithm is ro-

bust enough to handle such hierarchies. Also, the rays cor-

responding to further light bounces are usually less frequent

in the picture, which compensates the looseness of the hier-

archy.

4. Stream reduction pass

After each traversal of a level of the ray-space hierarchy,

we need to remove the empty elements in each stream.

This is called a stream reduction pass, and it is essential to

our algorithm: otherwise, the number of elements, includ-

ing the empty ones, will grow to #pixels× #triangles and

fill the available memory. Stream reduction is also an es-

sential element of many GPGPU algorithms [Hor05]. For a

better efficiency of our ray-tracing algorithm, we have de-

signed two new stream reduction methods; both of them are

faster than Horn’s [Hor05], as well as Sengupta et al. ex-

tension [SLO06]. The first method is a hierarchical version

of [Hor05], that is faster and works on older GPUs, while the

second methods requires Geometry Shaders, currently avail-

able only on GeForce 8800 cards, but is easier to implement.

4.1. Hierarchical stream reduction

Our first stream reduction method is a hierarchical version

of Horn’s [Hor05]. We split the streams to be reduced into

smaller components of a fixed size, s. On each component,

we run a standard stream reduction method, such as the one

described by [Hor05]. We then concatenate the results of

each pass using line drawing. This concatenation step is eas-

ier because we know the number of non-empty elements for

s elements

Stream reduction removes e.g. all null-elements from

an input stream. Previous methods require log n

passes. We gain significant speedup by dividing the

task and doing parallel reduction on segments of

size s, thereby using only log s passes.

Then, the segments are

concatenated into one large

null-free stream using copying

with line-drawing

Then, the segments are

concatenated into one large

null-free stream using copying

with line-drawing

Stream of n elements

Figure 7: Our hierarchical stream reduction algorithm re-

moves all null-elements from the input stream. We split the

stream into small components of a fixed size, s, then run a

standard parallel stream reduction on each component (in

log s passes). Finally, we concatenate the resulting segments

in one render pass using line drawing.

each component. See Figure 7 for an outline of the algo-

rithm.

Our hierarchical stream reduction method is five times

faster than the non-hierarchical method in [Hor05] for

streams of 4k × 4k elements. The non-hierarchical version

has complexity of O(n logn), while our method has a com-

plexity of 4n+ n log s. Experimentally, we have found that

we get the best results for s = 64 elements, for streams com-

patible with current graphics cards (up to 16 M elements).

4.2. Using Geometry Shaders for stream reduction

Recent graphics cards, such as the NVidia GeForce 8800, of-

fer the ability to program the geometry engine, using geome-

try shaders. The geometry shader is the only programmable

part of the graphics pipeline where the number of outputs is

c© The Eurographics Association 2007.

D. Roger & U. Assarsson & N. Holzschuch / Whitted Ray-Tracing for Dynamic scenes using a Ray-Space Hierarchy on the GPU

not necessarily equal to the number of inputs, making it a

good candidate for a simple stream reduction.

We have implemented a stream reduction pass using ge-

ometry shaders: each stream is mapped into a vertex-buffer

object, which we render using points. The geometry shader

discards the empty nodes (no primitives are output) and

sends non-empty nodes into another vertex buffer object,

ready for the next iteration. With this method, we have to

run the hierarchy traversal on the vertex shader, instead of

the fragment shader. The output of the hierarchy traversal

(through vertex shaders) is sent as input to the geometry

shader. This makes sense because on the GeForce 8800 ar-

chitecture, the vertex processors and the fragment processors

are identical, and therefore run at the same speed.

Stream reduction using the geometry engine is easier to

implement, but hierarchical stream reduction is 40 % faster

for a stream of 4 M elements.

5. Results and Analysis

Unless otherwise specified, all the timings in this section

were recorded on a Pentium 3.2 GHz with a NVidia GeForce

8800 GTS, with 640 Mb of memory.

In all our timings, we have used the rendering time, ex-

pressed in milliseconds. We measured the time it takes to

render a complete picture (including both rasterization and

ray-tracing). We used this value because it makes it easier to

detect linear or sub-linear behaviour. The number of frames

per second is simply equal to 1000 divided by this rendering

time.

5.1. Test scenes

We have tested our algorithm on four different test scenes

(see Figure 8). The Patio and Alley scenes are scenes with

variable complexity, where we add or subtract objects to

create scenes where we change the polygon count with-

out changing the general nature of the scene. The Kitchen

scene has a fixed complexity, but several different specular

reflectors. We used two BART Museum scenes [LAAM01]

to study the behaviour of our algorithm with unstructured

specular reflectors. The Alley scene is an example of a large

scene (up to 2.3 million triangles), for which we run our al-

gorithm in several batches.

We have also tested our algorithm when we change the na-

ture of the specular reflector. For this we used several LOD

versions of the Stanford Bunny, and a statue model (see Fig-

ure 8, top row).

In all our tests, we computed the direct lighting using the

GPU: per-pixel lighting with a pixel shader and shadows us-

ing a shadow map. For shadows inside reflections, however,

we traced shadow rays. The number of shadow rays is thus

smaller than the number of reflection rays by one unit.

5.2. Analysis of the algorithm

Costs for each step of the algorithm Our ray-tracer runs

in four main phases: building the ray hierarchy, comput-

ing cone-spheres intersections for the hierarchy traversal, a

stream reduction phase, and finally computing the actual ray-

triangle intersection and shading the result.

We have found that the most important phase is the

stream-reduction pass, taking roughly 60 % of computation

time for each light bounce (see Figure 9(a)). The second

most important step is the cone-sphere intersection, taking

roughly 15 % of computation time. For the first light bounce,

where there are lots of rays, the ray-triangle intersection pass

takes a non-negligible part of computation time. For further

light bounces, the number of rays decreases, and the time

used for the ray-triangle intersection pass becomes much

smaller. The cost of building the ray hierarchy itself is negli-

gible, below 1 % (less than 2 ms for 1024×1024 resolution).

Variation with scene and reflector We are interested in the

behaviour of our algorithm in the presence of varying scenes

and reflectors. We placed a model of the Stanford Bunny,

with 4 different levels of detail, ranging from 948 to 69000

polygons, inside the Kitchen and Patio scenes. The rendering

time increases with the polygonal complexity of the Bunny

(see Figure 9(b)): a more complex Bunny model means more

spatial irregularities on the surface, and therefore a ray-space

hierarchy with looser levels. We also placed a specular re-

flector with controlled irregularities (a surface of equation

cos(nx)cos(ny)) inside the Kitchen scene (see Figure 11).

The rendering time increases with n (see Figure 9(c)).

We have tested our algorithm on the Patio scene, chang-

ing its complexity from 21K to 705K triangles, and using

three different specular reflectors: a smooth sphere, a 69K

polygons Bunny, and a 25K polygons statue model (see Fig-

ure 10). We computed values for the sphere and the statue

with the scene fitting in a single batch, and used a variable

number of batches for the Bunny (from 1 to 3). The render-

ing time depends on the number of polygons in the scene,

but the rate of variation is linked to the surface irregularities

on the reflector. Irregular reflectors result in faster variations

than smooth reflectors. The worst case corresponds to the

statue, with a viewpoint where the scene is reflected in the

folds at the bottom of the dress.

Judging from this data, the most important parameter

in our algorithm is the shape of the specular reflectors. A

smooth reflector results in a tight hierarchy, especially at the

lower levels, while a reflector with many irregularities and

discontinuities results in a looser hierarchy, and a rapid in-

crease in the rendering time. Looseness at the upper levels of

the hierarchy has less consequences: with a sphere, the top

level of the hierarchy covers the entire space in the angular

domain (see Figure 12(a)). We also tested our algorithm on

a scene where all the walls are specular reflectors (see Fig-

ure 12(b)): the top level of the hierarchy covers the entire

c© The Eurographics Association 2007.

D. Roger & U. Assarsson & N. Holzschuch / Whitted Ray-Tracing for Dynamic scenes using a Ray-Space Hierarchy on the GPU

P
at

io
(2

1
K

to
7
0
5
K

tr
ia

n
g
le

s)

236 K tris, 402 ms 87 K tris, 143 ms 705 K tris, 898 ms

A
ll

ey
(3

1
4
K

to
2
.3

M
tr

ia
n
g
le

s)

2.3 M triangles, 1.3 s 2.3 M triangles, 18.5 s 987 K triangles, 8.3 s

K
it

ch
en

(8
3

K
tr

ia
n
g
le

s)

286 ms 349 ms 674 ms (2 bounces)

M
u
se

u
m

(1
0
K

an
d

7
5
K

tr
ia

n
g
le

s)

10 K tris, 289 ms (refl.+shadow) 75 K tris, 3330 ms (refl.+shadow) 75 K tris, 1316 ms (reflection only)

Figure 8: Our test scenes. All timings correspond to pictures with 512×512 pixels, and a single light bounce, with no shadow

rays inside the reflection (unless otherwise specified). In the museum scene, the floor, stand and triangle soup are specular.

Some of these scenes are shown in the color plate.

c© The Eurographics Association 2007.

D. Roger & U. Assarsson & N. Holzschuch / Whitted Ray-Tracing for Dynamic scenes using a Ray-Space Hierarchy on the GPU

100 %

75 %

50 %

25 %

0 %
 1 2 3 4 5

Light bounce number

Others
Ray-triangle inters.

Cone-Sphere inters.
Stream reduction

(a) Relative time used by each step of our ray-

tracer, for several light bounces.

 0

 250

 500

 750

 0 25000 50000 75000

R
en

d
er

in
g

 t
im

e
(m

s)

Number of triangles in the Bunny model

Kitchen (83K), 1024
2

Patio (87K), 512
2
, viewpoint 1

Patio (87K), 512
2
, viewpoint 2

(b) Several LODs for the specular Bunny.

 0

 250

 500

 0 1 2 3 4 5 6

R
en

d
er

in
g

 t
im

e
(m

s)

Value of n in the equation cos(nx)sin(ny)

Kitchen (83K), 512
2

(c) Specular surface with controlled curvature

Figure 9: Analysis of the behaviour of our ray-tracer.

 0

 250

 500

 750

 1000

 0 250000 500000 750000

R
en

d
er

in
g
 t

im
e

(m
s)

Nb. polygons in the Patio scene (512
2
 pixels)

Statue (2 viewpoints)
Bunny
Sphere

Figure 10: Rendering times with our ray-tracer on the Patio

scene, with different specular reflectors.

(a) n = 2 (b) n = 3

Figure 11: Two scenes from our curvature experiment.

The reflective surface has equation cos(nx)cos(ny) (Kitchen

scene, 83K polygons, 512×512 pixels).

spatial domain. In both cases, the looseness of the hierarchy

at the upper levels did not slow down the algorithm. Simi-

larly, the large number of specular reflectors in the Kitchen

scene does not hinder the algorithm (see Figure 8), even

though the spatial extent of the hierarchy covers all visible

specular reflectors.

Our explanation is that the top levels have a small number

of nodes, so even if a node covers a large spatial and angular

extent, it has small consequences on memory costs or com-

putations. On the contrary, there is a large number of nodes

at the bottom levels, so their spatial or angular extent has a

strong impact on the algorithm.

(a) 705K tris, 308 ms (b) 30K tris, 136 ms for

one bounce, 1035 ms for 3

bounces + 2 shadow rays

Figure 12: Our algorithm performs nicely even when the

top levels have a large extent in the angular (a) or spatial

(b) domain (512×512 pixels).

Note: For all the curves in this section (Figures 9 and 10),

we used the number of polygons in the reflected scene, not

including the number of polygons in the specular reflector.

This allows a better comparison between the different spec-

ular reflectors.

Number of ray-triangle intersections Figure 13(a) shows

the average number of ray-triangle intersections for each ray

in the Patio scene, for different viewpoints, picture resolu-

tions and specular reflectors. It corresponds to the average

number of triangles that are kept for each ray, at the end of

the traversal of the hierarchy. Depending on scene complex-

ity, we get values between 2.5 and 4.5, which corresponds to

the number of polygons the ray intersects, thus showing that

the ray-space hierarchy works properly. In several cases, the

curves for picture resolutions of 512×512 and 1024×1024

are indistinguishable.

Number of Cone-sphere intersections The most important

result we found is that the rendering time is closely cor-

related to the number of cone-sphere intersections. In Fig-

ure 13(b), we plot the former as a function of the latter, for

all the tests we ran. The results are strikingly similar, for all

test scenes: the number of cone-sphere intersections has a

c© The Eurographics Association 2007.

D. Roger & U. Assarsson & N. Holzschuch / Whitted Ray-Tracing for Dynamic scenes using a Ray-Space Hierarchy on the GPU

 0

 1

 2

 3

 4

 5

 0 250000 500000 750000

R
ay

-t
ri

an
g

le
 i

n
te

rs
ec

ti
o

n
s

p
er

 r
ay

Nb. polygons in the Patio scene

Statue
Bunny (vp1)
Bunny (vp2)

Sphere

(a) Average number of ray/triangle intersec-

tions for each ray, as a function of scene com-

plexity.

 0

 250

 500

 750

 1000

 0 5e+07 1e+08 1.5e+08

R
en

d
er

in
g

 t
im

e
(m

s)

Nb. of cone-sphere intersections

Bunny
Sphere
Statue

Museum

(b) Rendering time as a function of the num-

ber of cone-sphere intersections, for all our

test scenes.

 0

 250

 500

 750

1024512256128

R
en

d
er

in
g

 t
im

e
(m

s)

Width of the picture in pixels

Patio
Kitchen

Museum (10K)

(c) Rendering time as a function of the picture

width for our test scenes. Rendering time is

linear with the width, and thus sub-linear with

the total number of pixels.

Figure 13: Analysis of the behaviour of our ray-tracer.

direct impact on the rendering time. This may seem surpris-

ing as we found that the bottleneck of the algorithm was the

stream reduction pass and not the cone-sphere intersection

(Figure 9(a)). But the computation time for the stream reduc-

tion pass depends on the number of non-empty elements in

the stream, and is thus related to the number of cone-sphere

intersections.

Picture resolution and pixels covered by the reflectors

Unsurprisingly, we have found that the rendering time for

our algorithm is linear with the percentage of the screen cov-

ered by the specular reflectors. More surprisingly, we have

found that the rendering time is sub-linear with the total

number of pixels in the picture (see Figure 13(c)). Both ef-

fects are a consequence of using ray hierarchies: for the first

effect, the percentage of the screen covered by the specular

reflector linearly affects the number of cones at each level of

the hierarchy, and therefore the number of cone-sphere in-

tersections at each level. For the second effect, doubling the

width and height of the picture (thus quadrupling the number

of pixels) only results in a single level added at the bottom

of the hierarchy and, on average, only doubles the number

of non-empty nodes in the hierarchy. The number of ray-

triangle intersections is still quadrupled, but this step has a

relatively small cost (see Figure 9(a)).

Large scenes We ran our algorithm on large scenes with

many unstructured objects (more than 1 million polygons,

see Figure 8, second row). For these scenes, the number of

batches required is very high (between 20 and 140), and we

do not aim at interactive rendering, but we found that our al-

gorithm is robust enough to handle these scenes and scales

well, even with many un-structured objects such as trees. See

Figure 14(a) for the rendering time (in seconds) as a function

of the number of polygons, for the Alley scene. We also in-

cluded the Patio scene for comparison. Looking at the vari-

ation rate for both curves, we can see that the Alley scene is

more difficult for our algorithm than the Patio scene, proba-

bly due to the large number of triangles intersected by each

cone in the models of the trees.

5.3. Comparison with previous work

Comparing our algorithm with previous work is a difficult

task, as most previous work trace primary rays in static

scenes, while we trace secondary rays in dynamic scenes.

Papers that report figures for animated scenes and/or sec-

ondary rays find that their algorithm is much slower than on

static scenes and/or primary rays. We feel that it would not

be useful to compare the rendering times for our algorithm

with those for a ray-tracer computing primary rays in static

scenes. The latter is bound to be faster, but the two algo-

rithms are simply not solving the same problem.

In all our comparisons with previous work, we converted

the framerates reported in the papers into milliseconds, and

we used data corresponding to dynamic scenes or secondary

rays (or both). We used the same picture size as the original

papers.

5.3.1. CPU ray-tracing

Bounding Volume Hierarchies: Lauterbach et al.

[LYTM06] used bounding volume hierarchies as an accel-

eration structure. Figure 14(c) shows a comparison of their

rendering time for a dynamic scene with specular reflection

(exploding Bunny) with our algorithm. Our algorithm runs

approximately twice as fast, with a more complex scene

being reflected in the Bunny.

Dynamic BVHs: Wald et al. [WBS07] used Dynamic

Bounding Volume Hierarchies for ray-tracing of deformable

scenes. They only report data for simple shading, without

secondary rays. Figure 14(b) shows a comparison with our

algorithm. Our algorithm runs at comparable speeds (slower

for simple scenes, faster for more complex scenes), while

computing specular reflections as well.

c© The Eurographics Association 2007.

D. Roger & U. Assarsson & N. Holzschuch / Whitted Ray-Tracing for Dynamic scenes using a Ray-Space Hierarchy on the GPU

 0

 10

 20

 0 1e+06 2e+06

R
en

d
er

in
g

 t
im

e
(s

)

Number of polygons (512
2
 pixels)

Alley
Patio+Bunny

(a) Large unstructured scene (Patio included

for comparison).

 0

 500

 1000

 1500

 2000

 2500

 0 250000 500000 750000 1e+06

R
en

d
er

in
g

 t
im

e
(m

s)

Number of polygons (1024
2
 pixels)

Statue
Bunny
Sphere

[HSHH07]
[WBS07]

(b) Comparison with previous work

[HSHH07, WBS07].

 0

 500

 1000

 0 250000 500000 750000 1e+06

R
en

d
er

in
g

 t
im

e
(m

s)

Number of polygons (512
2
 pixels)

Statue
Bunny
Sphere

[LYTM06]
[Sze06]

[CHCH06]

(c) Comparison with previous work

[LYTM06, Szé06, CHCH06].

Figure 14: Rendering time for our algorithm as a function of the number of polygons.

Bounding Interval Hierarchy: Wächter and Keller

[WK06] used a Bounding Interval Hierarchy as an accel-

eration structure. They computed specular reflections on

the BART Museum scene (see Figure 8, bottom row). On

the simple Museum3 scene (10412 triangles), we render

the scene in 289 ms, compared to 1282 ms for [WK06].

On the complex Museum8 scene (75844 triangles) we are

slower: we render the scene in 3330 ms, compared to 2040

ms in [WK06]. This slow rendering comes from the shadow

rays: rendering the scene with specular reflections and no

shadows in the reflection only requires 1316 ms.

5.3.2. GPU ray-tracing

Interactive k-D tree GPU raytracing: Horn et al.

[HSHH07] traverse k-d trees using the GPU. Figure 14(b)

shows a comparison of the rendering times for our algorithm

with their figures for one level of specular reflection. Their

algorithm is slightly faster than ours, but only handles static

scenes.

The Hierarchical Ray Engine: Szécsi [Szé06] used a two-

level hierarchy on ray-space for ray-tracing. Figure 14(c)

shows a comparison of our algorithm with [Szé06]. We are

able to handle much larger scenes, and we are approximately

4 times faster.

Geometry Images Carr et al. [CHCH06] constructed ge-

ometry images for fast ray-tracing of animated meshes. Fig-

ure 14(c) shows the rendering times reported in [CHCH06]

for primary rays on a Bunny scene, compared with our al-

gorithm. Using a specular Bunny as the reflector, we are ap-

proximately 5 times faster, while handling specular reflec-

tions.

5.3.3. Time to first picture

Like Wächter and Keller [WK06], we think that an impor-

tant parameter for some applications is the time to the first

picture: the time it takes until the user sees the first picture

being computed (including the time for scene treatment and

pre-processing). In our case, the time to the first picture is al-

ways equal to the rendering times reported, as our algorithm

requires absolutely no pre-processing or scene structure.

6. Conclusion and future directions

In this paper, we have presented a new algorithm for fast

GPU ray-tracing of secondary rays in dynamic scenes. Our

algorithm uses a ray-space hierarchy, which we build on the

fly for each rendering. The entire ray-tracing is done on the

GPU, doing a hierarchical descent in ray-space and checking

rays against the triangles in the scene. After each pass, we

cull the empty sub-trees of the hierarchy using a hierarchi-

cal stream-reduction algorithm that is faster than previously

published methods.

Using a ray-space hierarchy allows us to compute ray-

tracing on the GPU without any conditional branches in the

shaders, performing the same computations for each pixel

at all steps. We stay closer to the SIMD architecture of the

GPU, and we can thus exploit all its processing power. Our

algorithm achieves interactive rendering on moderately com-

plex scenes (up to ≈ 700K triangles, depending on the spec-

ular reflector), but can handle very large scenes. We also

found that our algorithm scales sub-linearly with the total

number of pixels in the picture, making it an interesting

choice for the generation of high-definition pictures.

In future work, we would like to apply our ray-tracer

to cone ray-tracing [Ama84]. Since we already work with

cones, this could be an easy extension, and it would give us

anti-aliasing, soft shadows and glossy BRDFs. We also want

to combine our ray-space hierarchy with a scene hierarchy,

traversing both hierarchies simultaneously for faster results.

References

[AK87] A J., K D.: Fast ray tracing by ray classifi-

cation. Computer Graphics (Proc. SIGGRAPH 87) 21, 4

(1987).

[Ama84] A J.: Ray tracing with cones. Com-

puter Graphics (Proc. SIGGRAPH 84) 18, 3 (1984).

c© The Eurographics Association 2007.

D. Roger & U. Assarsson & N. Holzschuch / Whitted Ray-Tracing for Dynamic scenes using a Ray-Space Hierarchy on the GPU

[App68] A A.: Some techniques for shading machine

renderings of solids. In Spring Joint Computer Conf.

(1968), vol. 32, AFIPS.

[CF99] C A., F T.: Ray space for hierarchi-

cal ray casting. http://www.doc.ic.ac.uk/˜ajf/Research/-

Papers/RaySpace/CGandA/rayspace-cga.ps.gz, 1999.

[CHCH06] C N. A., H J., C K., H

J. C.: Fast GPU ray tracing of dynamic meshes using ge-

ometry images. In Graphics Interface (2006).

[CHH02] C N. A., H J. D., H J. C.: The Ray

Engine. In Graphics Hardware (2002), pp. 37–46.

[Chr04] CM.: Implementing Ray Tracing on GPU.

Diploma thesis, University of Applied Sciences, Basel,

Switzerland, 2004.

[EGMM07] EM., G T., MM., M̈

S.: Automatic Creation of Object Hierarchies for Ray

Tracing Dynamic Scenes. In WSCG Short Papers Pro-

ceedings (2007).

[EMDT06] E P., M I., D G., T

D.: A GPU-driven algorithm for accurate interactive re-

flections on curved objects. In Rendering Techniques

2006 (Proc. EG Symposium on Rendering) (2006).

[EVG04] E M., V C., G G.: Stack

implementation on programmable graphics hardware. In

Vision, Modeling, and Visualization 2004 (2004).

[FS05] F T., S J.: KD-tree acceleration struc-

tures for a GPU raytracer. In Graphics Hardware (2005).

[GH98] G D., H J.-M.: A beam

tracing with precise antialiasing for polyhedral scenes.

Computer Graphics 22, 1 (1998), 103–115.

[HH84] H P. S., H P.: Beam tracing polyg-

onal objects. Computer Graphics (Proc. SIGGRAPH 84)

18, 3 (1984).

[Hor05] H D.: Stream reduction operations for

GPGPU applications. In GPU Gems 2, Pharr M., (Ed.).

Addison Wesley, 2005, pp. 573–589.

[HSHH07] HD., S J., HM., H

P.: Interactive k-d tree gpu raytracing. In Symposium on

Interactive 3D Graphics and Games (2007). (to appear).

[IRWP06] I T., R C., W I., P S. G.:

An evaluation of parallel grid construction for ray tracing

dynamic scenes. In IEEE Symposium on Interactive Ray

Tracing (2006).

[KL04] K F., L C. J.: Ray Tracing

on Programmable Graphics Hardware. Master’s thesis,

Chalmers University of Technology, Göteborg, Sweden,

2004.

[LAAM01] L J., A U., A-M̈ T.:

A benchmark for animated ray tracing. IEEE Computer

Graphics and Applications 21, 2 (2001), 22–31.

[LYTM06] L C., Y S.-E., T D., M

D.: RT-DEFORM: Interactive ray tracing of dynamic

scenes using BVHs. In IEEE Symposium on Interactive

Ray Tracing (2006).

[NO97] N K., O Y.: Breadth-first ray tracing

utilizing uniform spatial subdivision. IEEE Transactions

on Visualization and Computer Graphics 3, 4 (1997).

[NO02] N K., O Y.: Enhanced breadth-first

ray tracing. Journal of Graphics Tools 6, 4 (2002).

[PBMH02] P T. J., B I., M W. R., H-

 P.: Ray tracing on programmable graphics hardware.

ACM Transactions on Graphics (Proc. SIGGRAPH 2002)

21, 3 (2002), 703–712.

[RH06] R D., H N.: Accurate specular re-

flections in real-time. Computer Graphics Forum (Proc.

Eurographics 2006) 25, 3 (2006).

[RSH05] R A., S A., H J.: Multi-

level ray tracing algorithm. ACM Transactions on Graph-

ics (Proc. SIGGRAPH 2005) 24, 3 (2005), 1176–1185.

[SKALP05] S-K L., ÁB., Ĺ I., P-

 M.: Approximate ray-tracing on the GPU with dis-

tance impostors. Computer Graphics Forum (Proc. Euro-

graphics 2005) 24, 3 (2005).

[SLO06] S S., LA. E., O J. D.: A work-

efficient step-efficient prefix sum algorithm. In Workshop

on Edge Computing Using New Commodity Architectures

(May 2006), pp. D–26–27.

[Szé06] Ś L.: The Hierarchical Ray Engine. In WSCG

(2006).

[TS05] T N., S L. O.: A Comparison of Ac-

celeration Structures for GPU Assisted Ray Tracing. Mas-

ter’s thesis, University of Aarhus, Denmark, 2005.

[WBS07] W I., B S., S P.: Ray tracing de-

formable scenes using dynamic bounding volume hierar-

chies. ACM Trans. Graph. 26, 1 (2007), 6.

[Whi80] W T.: An improved illumination model for

shaded display. Communications of the ACM 23, 6 (June

1980), 343–349.

[WIK∗06] W I., I T., K A., K A., P

S. G.: Ray Tracing Animated Scenes using Coherent Grid

Traversal. ACM Transactions on Graphics (Proc. SIG-

GRAPH 2006) 25, 3 (2006).

[WK06] Ẅ C., K A.: Instant ray tracing:

The bounding interval hierarchy. In Rendering Tech-

niques 2006 (Proc. EG Symposium on Rendering) (2006),

pp. 161–166.

[WS01] W I., S P.: State-of-the-art in interac-

tive raytracing. In State of the Art Reports, Eurographics

(2001).

c© The Eurographics Association 2007.

