A million pixels, a million polygons. Which is heavier?

François X. Sillion

iMAGIS*

Grenoble, France

*A joint research project of CNRS, INRIA, INPG and UJF
Why this question?

- Evolution of processing power and architectures
- New applications, demands and markets
 - Giant databases (digital mock up)
 - Virtual reality, games...
- Image-based graphics:
 - Current state and trends
 - Potentialities

© François Sillion, iMAGIS 1997
A million polygons
Who needs a million polygons?

✓ Assemblies of CAD models
✓ Integrated design/manufacturing
✓ Digital mock-ups

© François Sillion, iMAGIS 1997
A million pixels
Rendering in Computer Graphics

- Models for 3D geometry, light reflection
- Global illumination simulation
- Real-time rendering

All of these requirements present difficult challenges!
Subtle illumination effects

© François Sillion, iMAGIS 1997
Real-time rendering for dynamic scenes

© François Sillion, iMAGIS 1997
Image-based rendering (IBR)

- Avoid expensive/difficult 3D model
- Start from a set of images
- Manipulate pixels to create new image
- With real images, elaborate lighting effects are “free”
- QuicktimeVR [Chen95], [Laveau], [McMillan95,97],...
What's an image?

✓ array of RGB (α) samples

✓ add depth sample

✓ add multiple depths, normals...

(Layered Depth Image, LDI)

© François Sillion, iMAGIS 1997
Tour into the picture [Horry 97]

- Use a single image
- Manually define simple perspective
- Manually create layers with selected portions of the image

See http://www-syntim.inria.fr/~horry/images/s97slide.html
Layered depth images [Gortler97]

Gather multiple depth samples for each pixel

Layered depth images

✅ Reproject all samples in new image
 – no need for depth comparisons
 – splatting technique
Rendering from a million polygons?

- Transform 1-3M vertices: 20 M flop
- Lighting: 10 M flop
- Texturing: 15 M flop
- Memory bandwidth: 100 Mb
- Raster engine, z-buffering: ?

© François Sillion, iMAGIS 1997
Rendering from a million pixels?

- Transform 1M points (coherence) 6 M flop
- No lighting
- No z-buffering
- Memory bandwith (coherent access) 8 Mb
Rendering performance considerations

✓ 3D rendering reaches the consumer market
 – thousands of lit, textured polygons / second.
 – specialized boards require careful design for efficient integration.

✓ Image processing subsystems
 – video (analog/digital),
 – texture (games),
 – multimedia extensions

© François Sillion, iMAGIS 1997
Generating and obtaining IBR models

✓ From synthetic images
 – Ray tracing
 – Range images, LDIs, Lumigraphs

✓ From real images
 – use panoramic views, vision techniques
 – feature matching (difficult)
 – Lumigraphs (no depth)
Link with vision

- Image based modeling (IBM...)
- Use images + parameters
 - avoid WYSIAYG
 - object class information
 - interactive modeling (facade)
IBR = sampling + reconstruction

✓ Operate without geometry
✓ More complete representations (higher dimensionality)
✓ Simplified representations (adding simplified 3D model)
Light field - Lumigraph

Slide used with permission (M. Levoy, Pat Hanrahan)
See http://www-graphics.stanford.edu/projects/lightfield

© François Sillion, iMAGIS 1997
Light field - Lumigraph sampling

Slide used with permission (M. Levoy, Pat Hanrahan)
Impostors

✓ Create textured 3D model from images
 – simplified representation
 – rendered as 3D geometry

✓ Planar polygons [Maciel95, Schaufler96, Shade96]

✓ 3D meshes from range images
 [Pulli 97, Darsa 97, Sillion 97]

© François Sillion, iMAGIS 1997
Textured 3D mesh from a range image

View based models

Slide used with permission (K. Pulli et al.)
Blending required to combine views

without blending (z-buffer)

with blending

[Pulli 97]

Images used with permission (K. Pulli et al.) See http://www.cs.washington.edu/homes/kapu
Principles of our approach: example
Local model (3D objects)
Distant model (3D objects)
Impostor (Textured 3D mesh)
Combined model (local+impostor)
Combined model (local+impostor)
Deforming impostors

✓ Talisman [Torborg 96]
 – Render sprites
 – Layered model
 – Affine transforms [Lengyel97]

✓ Impostor transition

Slide used with permission (J. Lengyel et al, Microsoft research.)
See http://research.microsoft.com/~jedl

© François Sillion, iMAGIS 1997
Applications for IBR

- Walkthrough / view synthesis
- Stereo synthesis
- Interpolation/extrapolation
 - Latency compensation
 - Frame rate equalization
 - Network transmission
 - Leverage expensive rendering

© François Sillion, IMAGIS 1997
<table>
<thead>
<tr>
<th>Polygons</th>
<th>Pixels</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Continuous</td>
<td>✓ Discrete</td>
</tr>
<tr>
<td>✓ Modeling</td>
<td>✓ Capture</td>
</tr>
<tr>
<td>✓ Animation</td>
<td>✓ Video streams</td>
</tr>
<tr>
<td>✓ Level of detail</td>
<td>✓ Filtering</td>
</tr>
</tbody>
</table>

© François Sillion, iMAGIS 1997
Pixels

- Discrete, regular nature
 - easy to filter: adaptation to user perceptual limitations
- Work with real images
 - Easy to capture
 - Let nature do the modeling/lighting
 - Work from existing images
 (historical, legal, forensic applications...)
- WYSIAYG

© François Sillion, iMAGIS 1997
Polygons

✓ Complete 3D model
 – solid modeling
 – global illumination
 – path planning, assembly checking, collision detection

✓ Common denominator for many modeling systems

✓ Can be simplified but it's hard to keep the model consistent
Extended notion of image-based models

- Use *both* images and 3D data
- Combine a simplified model with images
- Model can be extracted from images or other information
IBR and availability of 3D models

- ✔ Complete 3D model
 - IBR as graphics subsystem
- ✔ No 3D model
 - QTVR, plenoptic rendering
 - The model *is* the image(s)
- ✔ Range data available
 - Scanned data is huge: need to simplify

© François Sillion, iMAGIS 1997
Problems with current algorithms

- Holes in reconstructed images
- Image deformation (impostors)
- Volume of data
- Sampling/filtering artifacts
Can we expect hardware advances?

- view interpolator
- soft z-buffering and blending
- multiple or view-dependent textures
- decompression
- memory bandwidth

© François Sillion, IMAGIS 1997
Limitations of IBR

- Specularities
- Lighting/geometry/reflectance changes are hard
- Computer Vision issues: model building
- Images may not be available!
Marketability

- QTVR, panoramic images
- Image-based modeling
- Image-based rendering architectures
- Image caching, impostors
- Network applications (QoS)
- Light field
...and now?

✓ Simulation of global illumination
✓ Visibility calculations
✓ View-dependent texture mapping
 – disparity/depth
 – specularity/shading
 – re-lighting
✓ Compression of depth values
Computer-augmented reality

Drettakis 97

input panorama

computed solution
Conclusions

- IBR offers useful advances
 - leverage cost of high-quality rendering
 - fast extension via specialized subsystem
- Vision issues limit applicability of “pure” IBR for real images
- Use combined 3D models and images
- Polygons are still useful!
Acknowledgements

✓ Yann Argotti, George Drettakis, Frédo Durand, Peter Kipfer, Céline Loscos, Stéphane Moreau, Cyril Soler
✓ Michael F. Cohen, Steven Gortler
✓ Marc Levoy, Pat Hanrahan, Kari Pulli, Jed Lengyel, Youichi Horry, Ken-ichi Anjyo, Kiyoshi Arai