Ray-tracing
Ray-tracing

- Ray casting, ray tracing: rays sent from viewpoint towards the scene.
- One ray for every pixel.
- Pixel color depends on illumination at the first surface intersected by the ray.
- Using local illumination models.
Three new rays are generated: refracted ray, reflected ray, shadow ray.
Ray–tree

Viewpoint

Object 1

- reflected
- refracted

Object 2

- reflected
- refracted

Object 3

- reflected
- refracted

Light source
Even more rays

- Soft shadows
 - Several shadow rays for each extended light source
Even more rays

- **Soft shadows**
 - Several shadow rays for each extended light source
- **Anti-aliasing**
 - Several rays per pixel

1 rayon
2 rayons
3 rayons
Even more rays

- Soft shadows
 - Several shadow rays for each extended light source
- Anti-aliasing
 - Several rays per pixel
- Glossy reflections
 - Several reflected rays
Even more rays

- Soft shadows
 - Several shadow rays for each extended light source
- Anti-aliasing
 - Several rays per pixel
- Glossy reflections
 - Several reflected rays
- Motion blur
 - Several rays through time
Even more rays

- Soft shadows
 - Several shadow rays for each extended light source
- Anti-aliasing
 - Several rays per pixel
- Glossy reflections
 - Several reflected rays
- Motion blur
 - Several rays through time
- Depth of field
 - Several rays per pixel through the lens
Even more rays

- Soft shadows
 - Several shadow rays for each extended light source
- Anti-aliasing
 - Several rays per pixel
- Glossy reflections
 - Several reflected rays
- Motion blur
 - Several rays through time
- Depth of field
 - Several rays per pixel through the lens
Ray–scene intersection

- Ray–plane: line–plane intersection
- Ray–polygon:
 - line–plane intersection.
 - test whether intersection point is in polygon:
 - project onto xy plane, check inside 2D polygon.
Ray–scene intersection

- 99% of the time is spent doing intersections.
- Need for accelerations:
 - bounding volumes,
 - uniform grids (voxels),
 - octrees,
 - BSP–trees,
 - problem specific accelerations;
Bounding volumes

- Intersection with a bounding volume
- Early rejection
Bounding volumes

Not-axis-aligned bounding box

Bounding sphere

Arbitrary convex region

Axis-aligned bounding box
BVH: Bounding Volume Hierarchy
Uniform grid
Adaptive grid: Octree
Question. 3 mn with your neighbors

- Compare 3 accelerations structures:
 - Bounding volumes
 - Uniform grid
 - Octree
Comparison

- **Bounding volume:**
 - long initial step, fast requests.

- **Uniform Grid:**
 - fast initial step, fast requests... if proper resolution.

- **Octrees:**
 - fast and simple initial step, longer requests.
Ray-tracing: advantages

- Slow, but no extra charge for:
 - hidden surface removal,
 - shadows,
 - transparency,
 - texture-mapping (including procedural).
- Inter-reflexions between objects,
- Any graphics primitives,
- Global illumination model.
Ray-tracing: issues

- Limited to Snell–Descartes:
 - all objects are metallic.

- Tree limited to a certain depth:
 - complex objects may be a problem (diamonds, cristal glass)

- Extension: Monte–Carlo Ray–Tracing
 - shoots several rays. slow, but nice.