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Direct and indirect lighting

Direct : Indirect :
local properties global problem



Direct and indirect lighting

Direct + Indirect




Direct and indirect lighting

+ Indirect

Direct




Global illumination

» Interactions between objects

» Light transport

» Reflections, refraction, diffusion
» Conservation of light energy




The rendering equation

L(x,d)

1S/,W/MeAA Jlun asuelpey

L(x,d) = E(x,d) + [ p(x,d,d”) v(x,x’) Le<’,d’) G(x,X’) dA

Radiance leaving point x
in the direction d




The rendering equation

L(x,d)

1S/,W/MeA\ Jlun asuelpey

L(x,d) = E(x,d) + [ p(x,d,d”) v(x,x’) Le<’,d’) G(x,X’) dA

Radiance emitted from X:
non-zero only if X belongs to a light source




The rendering equation

L(x,d)

1S/,WU/MEBAN JIUN aoueipey

L(x,d) = E(x,d) +fp(x,d,d’) v(x,x’) L(x’,d’) G(x,x’) dA

Y

Integrating the contribution
from all the surfaces




The rendering equation

L(x,d)

1S/,WU/MEBAN JIUN aoueipey

L(x,d) = E(x,d) + [ p(x,d,d) v(x,x") L(x’,d") G(x,X") dA

Incoming Radiance
from point x’ in the direction d’




The rendering equation

L(x,d)

1S/,WU/MEBAN JIUN aoueipey

L(x,d) = E(x,d) + ] p(x,d,d”) v(x,x’) L(<’,d’) G(x,X") dA

Multiplication by the reflectance (BRDF)
of the surface at point X




The rendering equation

L(x,d)

1S/,WU/MEBAN JIUN aoueipey

L(x,d) = E(x,d) + [ p(x,d,d”) v(x,x") L(x’,d") G(x,X") dA

Visibility between x and X’

1 when the two points are visible from each
other, O otherwise




The rendering equation

L(x,d)

1S/,WU/MEBAN JIUN aoueipey

L(x,d) = E(x,d) + [ p(x,d,d”) v(x,x") L(x’,d") G(x,X") dA

Geometric factor depending on the
surfaces x and x’




The rendering equation

L(x,d)

1S/,W/MeA\ Jlun asuelpey

L(x,d) = E(x,d) + [ p(x,d,d”) v(x,x’) Le<’,d’) G(x,x’) dA

Full general analytical solution impossible




Two discretisations

» Radiosity

= Discretize the geometry:
exchanges between patches

= All objects are diffuse

» Ray-tracing and its extensions
(Monte-Carlo path tracing, Photon mapping...)

= Sampling the mtegral
= Optical laws




Ray tracing
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« Whitted Ray Tracing » (1980)

» One ray per pixel
» Three new rays are created

réflection




Eve n m O re rayS Point light source

« Distributed Ray Tracing » Cook et al. (1984)

» Soft shadows

= Several rays for each
extended light source

Extended light source




Even more rays

« Distributed Ray Tracing » Cook et al. (1984)

» Soft shadows
= Several rays for each extended light source

» Anti-aliasing
= Several rays for each pixel
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Even more rays

« Distributed Ray Tracing » Cook et al. (1984)

» Soft shadows
= Several rays for each extended light source
» Anti-aliasing
= Several rays for each pixel

» Glossy Reflection
= Several rays are reflected




Even more rays

« Distributed ray tracing » Cook et al. (1984)

» Soft shadows

= Several rays for each extended light source
» Anti-aliasing

= Several rays for each pixel

» Glossy Reflection
= Several rays are reflected

» Motion blur
= Several rays during time




Even more rays

« Distributed Ray Tracing » Cook et al. (1984)

» Soft shadows
= Several rays for each extended light source

» Anti-aliasing
= Several rays for each pixel

» Glossy Reflection
= Several rays are reflected

» Motion blur
= Several rays during time

» Depth of field

= Several rays per pixel,
focusing with a lens




Even more rays

« Distributed Ray Tracing » Cook et al. (1984)

» Soft shadows
= Several rays for each extended light source

» Anti-aliasing
= Several rays for each pixel

» Glossy Reflection
= Several rays are reflected

» Motion blur
= Several rays during time

» Depth of field

= Several rays per pixel,
focusing with a lens










Ray tracing = integrating!

» Integrating what?
light sources: soft shadows
pixels: anti-aliasing
BRDF: glossy reflections
over Time: motion blur
over the lens: depth of field
over the hemisphere: indirect lighting
over light paths: global illumination

» Generic method for computing multi-
dimensional integrals:

Monte Carlo Integration




1D Integrals

» Integral of an arbitrary function
» Continuous problem = discretization




1D Integrals

» Trapezoidal approximation:
= Also Simpson’s rule, midpoint rule...




1D Integrals

» Monte Carlo: random sampling
= Don’t keep the distance between the n samples
= But on average, expectitto be 1/n




Monte Carlo: computing =

» Take a square

» Take a random point (X,y) in the square

» Test whether it is inside the ¥4 disc (x2+y2< 1)
» Probability is © /4

Integral of the function
y equal to 1 on the disc, O
outside




Monte Carlo: computing =

» Probability is © /4

» h = # points inside / # total points

» T=h* 4

» Error depends on the number of samples




See also: Buffon’s needle

» Floor made of parallel strips of wood

» Throw needles on the floor

= The needle either crosses the line or it doesn’t
= Count number of time it crosses the line
= Divide by total number of throws

» Result is connected to n
» P =21/t




Why not use Trapezoidal rule?

» To compute t, Monte Carlo is not highly
efficient

» But convergence rate independent from
dimension

> Monte Carlo integration very efficient for
higher dimensions




Continuous random variables

» Random variable x

» Probability distribution: p(x)

= Probability that this variable is between x and x+dx
IS p(x) dx




Expected value (mean)

FElx] = /OO xp(x)dx

— OO

Ef@) = [ f(@)p(z)da

» Expected value is linear:
E[f,(x) + af,(x)] = E[f;(x)] + a E[f,(X)]




Monte Carlo integration

» Take the function f(x) with x in [a b]
» We want to compute: b
I = / f(x)dx
a

» Take a random variable x

» If X has a uniform distribution, I=E[f(X)]
By definition of expected value




Sum of random variables

» Take N random variables, independent,
identical distribution (IID) x, (N échantillons)
Same probability (here uniform)

» Define:

mn
l Z N Monte Carlo
N estimator

» By linearity of expected value:
E[F\] = E[f(x)]




Variance

o

(@~ Bla])?p(a)do

» Measures the distance to expected value
» Standard deviation o: square root of variance

» Properties:
o?[x+y] = o?[x] + o?ly] + 2 Cov[x,y]
o[lax] = a2 o?[X]

o2 = El(z - BleD? = [




About the variance _

2 2
F'arl =
o [ N] o N

=1 i
» Independent variables = Cov[x;, X;]=0 si i=]

» thus o (error) decreases with \/N

- slow convergence




Example
L4
IZ/ 5z dx
0

» In theory, 1=1.0

» In practice, with a uniform distribution
error
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Monte Carlo integration: pros

» Few restrictions on the function to integrate
No requirements on continuity, regularity ...
Only needs sampling on a single point

» Same convergence rate on higher dimensions

» Very simple




Monte Carlo integration: pros

» Noise
» Slow convergence

» Efficient implementation harder




Monte Carlo methods

» On ray for every pixel

» For each visible point : random sampling of rays,
accumulate radiance

BN




Monte Carlo methods

» On ray for every pixel

» For each visible point : random sampling of rays,
accumulate radiance

» Keep going, recursively
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Monte Carlo methods

» On ray for every pixel

» For each visible point : random sampling of rays,
accumulate radiance

» Keep going, recursively
» Sample the light source each time
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Results




Monte Carlo Path Tracing

» Trace only one ray at each recursion

» But trace several (hundreds of) primary rays
for each pixel




Results

» 1 sample per pixel




Results

» 256 samples per pixel




Results: diffuse materials
» 10 paths/pixel




Results: shiny materials
» 10 paths/pixel




Results: shiny materials
» 100 paths/pixel




Why random sampling?

» Pseudo-random sampling sequence
» The structure appears:




Summary

» Send rays randomly
» Sample the rendering equation

» No requirements
Any kind of reflectance
Any kind of geometry
» Highly adaptive

» Can be noisy and / or very slow
Reducing variance: importance sampling
Speed-up: irradiance caching



Importance sampling

Optimal sampling
(Veach and Guibas 1995)




Non-uniform distribution

» N samples with probability p(x)
» Monte Carlo estimator becomes:

N i—1 p(x;)

» Probability p allows a better sampling of the
domain

How can we choose p?




Example: glossy reflections

» Integral over hemisphere of directions
» BRDF x cosine x incoming light
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Slide courtesy of Jason Lawrence



Sampling a BRDF

5 Samples/Pixel

Slide courtesy of Jason Lawrence



Sampling a BRDF

25 Samples/Pixel

Slide courtesy of Jason Lawrence



Sampling a BRDF

75 Samples/Pixel

Slide courtesy of Jason Lawrence



Importance sampling

N i—1 p(x;)

» Choose p wisely to reduce variance:
p must ook like f

Doesn’t change convergence with/ [NV
(reduces the constant)




Direct lighting




Global illumination




Indirect lighting




Irradiance cache

» Indirect lighting changes slowly in space




Irradiance cache

» Indirect lighting changes slowly in space




Irradiance cache

» Indirect lighting changes slowly in space
» Interpolate between neighboring values
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Irradiance cache

» Indirect lighting changes slowly in space
» Interpolate between cached values
» But full computation for direct lighting
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Irradiance cache

» Yellow dots: computation of indirect lighting




Irradiance cache

Path Tracing Path tracing + Irradiance cache




Irradiance cache

Path Tracing Path tracing + Irradiance cache




Photon mapping

» Pre—computation: throw rays from the light
sources




Photon mapping

» Store photons (position + intensity + direction)
on the geometry or inside an data structure




Photon mapping - rendering

» Throw primary rays

» Radiance for secondary rays by gathering
radiance from neighbouring photons




Rendu final

74




Results

» Jensen (1996)

= Direct visualization of the photon map: 6min




Results

» Jensen (1996)

= Final gather pass: + 51 mn




Results

» Walter (1998)
= Global lllumination: 28h
= Interactive rendering




Results

Mitsuba (http://www.mitsuba-renderer.org/)




Caustics

» Separate Photon
map for refraction




Results

V-Ray 1.5 for 3ds Max




Results




Results

CyberMotion 3D-Designer



Results

Yafray : ray tracer open source with Photon Mapping,
integrated with Blender.




Results

— 4

http://en.wikipedia.org/wiki/POV-Ray



Photon Mapping: summary

» Pre—computation view-point independent
Storage on the surfaces

» Good representation for caustics

» Noisy: smoothing based on the samples
Reconstruction of the radiance function

» Can be coded in two passes with a ray-tracer
One pass for each direction




Radiosity
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Radiosity

» Taking into
account all inter-

reflections

Sculpture byJohn Ferren

* Light v
/ green l‘ I yellow yellowl I green\
blue / OTANZE ey blue / orange
ey red — red

All visible surfaces, white.

v

Ray-tracing Radiosité



Radiosity methods [1984]

» Hypothesis: diffuse materials

» Radiance, BRDF... are independent from the
direction

= Simplifies the rendering equation

» Radiosity method:
Discretize this equation in object space
(viewpoint independent)
Solve the discretized equation
Render the scene using the illumination




L’équation de radiosité

» Environnement échantillonné sous la forme
de patchs discrets, de taille finie, émettant et
reflechissant la lumiere uniformement sur
leurs surface (choix d’une base)

| \ _

' |
/ 1 |
N Y
~{_| |
- /
’EE
oyaiienas

\

:

\]
A




Simplification and discretization

L(x,d) = E(x,d) +fp(x,d,d’) v(x,X’) G(x,x’) dA

» Simplified:

B(X) = E(X) + prB x x’) G(x,x’) dA
» Discrete version: Form factor

B, = E;+p; 2 F;i B, A/A

" B;, B;: radiosity for patches i etj (in W/m2)

= E:: emission for patch i

= F;; form factor, characterizes proportion of energy leaving
patch j arriving on i

" A et A : areas for patches i and j




Matrix representation

» Grouping together all elements:

- B

+(pFi) | < B=E+MB

» Matrix equation, to solve iteratively
= Relaxation methods ( gathering | shooting )




Form factor

» Form factor F;; from a patch A, towards a
patch A

F, = fAifAjV(X,X’) c0s5(0)cos(0’) 4y gy’

Ttr?

» Problem: computing this integral (4D). No

analyticl solution

Approximated solutions: projection on a
hemisphere or a hemicube.




Solving radiosity

» Pipeline for computing global illumination :

Scene Modelling

™

Compute Form Factors

™

Solve the system

™7

Rendering/display




Solving radiosity

» Iterative solving:




Question - 1 mn

» What must be recomputed if
something changes in the scene?

Geometry
Reflectance properties
Viewpoint

95




Solving radiosity

[ Scene Modelling J

i

[ Compute Form Factors J

U

[ Solve the system J

iL ge the

Rendering/display J

Change the
geometry

Change the
materials

|




Solving radiosity




Solving radiosity

Museum simulation. Cornell University. 50,000 patches.



Radiosity: pros

» Computations are viewpoint independent
» Okay for complex scenes

» Solving light exchanges
Interactive rendering




Radiosity: cons

» Memory cost
» Only diffuse materials

« final gather » using Ray-Tracing
» Meshing

Discontinuity mesh

» Long pre-computations
Possible speed-up: hierarchical radiosity




Hierarchical radiosity [Hanrahan91]

O

» Computation at different hierarchical levels
» Push-pull




Hierarchical radiosity




Hierarchical radiosity
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Mesh quality

Shadow leak Light leak



Discontinuity meshing
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Regular subdivision

\ViumEn
S



Discontinuity meshing




Discontinuity meshing




Discontinuity meshing




Résultats et comparaison

Rendu Scan-line.
(3DS MAX)

Rendu en radiosité et
lancer de rayons.




Results and comparison




Results and comparison




Results and comparison




Results and comparison
,




Radiosity today

» Used by architects (Lightscape)

» Used to precompute diffuse lighting for some
video games (light maps)

» Not an active research topic anymore
Monte-Carlo is more generic

But pre-computed radiance transfer is similar
(used e.g. in Max Payne 2)




