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Indirect :  
global problem 

Direct : 
local properties 
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+ Indirect Direct 
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Direct 

+ Indirect 



  Interactions between objects 
  Light transport 
  Reflections, refraction, diffusion 
  Conservation of light energy 
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L(x,d) = E(x,d) + ∫ ρ(x,d,d’) v(x,x’) L(x’,d’) G(x,x’) dA 

X' 
L(x,d) 

X 

d d' θ 

Radiance leaving point x  
in the direction d 

R
adiance unit: W

att/m
²/sr 
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L(x,d) = E(x,d) + ∫ ρ(x,d,d’) v(x,x’) L(x’,d’) G(x,x’) dA 

X' 
L(x,d) 

X 

d d' θ 

Radiance emitted from x:  
non-zero only if x belongs to a light source 

R
adiance unit: W

att/m
²/sr 
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L(x,d) = E(x,d) + ∫ ρ(x,d,d’) v(x,x’) L(x’,d’) G(x,x’) dA 

X' 
L(x,d) 

X 

d d' θ 

Integrating the contribution 
from all the surfaces 

R
adiance unit: W

att/m
²/sr 
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X' 
L(x,d) 

X 

d d' θ 

Incoming Radiance   
from point x’ in the direction d’ 

R
adiance unit: W

att/m
²/sr 

L(x,d) = E(x,d) + ∫ ρ(x,d,d’) v(x,x’) L(x’,d’) G(x,x’) dA 
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L(x,d) = E(x,d) + ∫ ρ(x,d,d’) v(x,x’) L(x’,d’) G(x,x’) dA 

X' 
L(x,d) 

X 

d d' θ 

Multiplication by the reflectance (BRDF) 
of the surface at point x 

R
adiance unit: W

att/m
²/sr 
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L(x,d) = E(x,d) + ∫ ρ(x,d,d’) v(x,x’) L(x’,d’) G(x,x’) dA 

X' 
L(x,d) 

X 

d d' θ 

Visibility between x and x’ 
1 when the two points are visible from each 

other, 0 otherwise 

R
adiance unit: W

att/m
²/sr 
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L(x,d) = E(x,d) + ∫ ρ(x,d,d’) v(x,x’) L(x’,d’) G(x,x’) dA 

X' 
L(x,d) 

X 

d d' θ 

Geometric factor depending on the 
surfaces x and x’ 

R
adiance unit: W

att/m
²/sr 
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X' 
L(x,d) 

X 

d d' θ 

Full general analytical solution impossible 

R
adiance unit: W

att/m
²/sr 

L(x,d) = E(x,d) + ∫ ρ(x,d,d’) v(x,x’) L(x’,d’) G(x,x’) dA 



  Radiosity  
 Discretize the geometry:  

exchanges between patches 
 All objects are diffuse 

  Ray-tracing and its extensions  
(Monte-Carlo path tracing, Photon mapping…) 
  Sampling the integral 
 Optical laws 
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  One ray per pixel  
  Three new rays are created 
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réflection 

réfraction 

ombre 



  Soft shadows 
  Several rays for each  

extended light source 
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Point light source 

Extended light source 



  Soft shadows 
  Several rays for each extended light source 

  Anti-aliasing 
  Several rays for each pixel 
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1 rayon 2 rayons 3 rayons 



  Soft shadows 
  Several rays for each extended light source 

  Anti-aliasing 
  Several rays for each pixel 

  Glossy Reflection 
  Several rays are reflected 
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  Soft shadows 
  Several rays for each extended light source 

  Anti-aliasing 
  Several rays for each pixel 

  Glossy Reflection 
  Several rays are reflected 

  Motion blur 
  Several rays during time 
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  Soft shadows 
  Several rays for each extended light source 

  Anti-aliasing 
  Several rays for each pixel 

  Glossy Reflection 
  Several rays are reflected 

  Motion blur 
  Several rays during time 

  Depth of field 
  Several rays per pixel,  

focusing with a lens 
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  Soft shadows 
  Several rays for each extended light source 

  Anti-aliasing 
  Several rays for each pixel 

  Glossy Reflection 
  Several rays are reflected 

  Motion blur 
  Several rays during time 

  Depth of field 
  Several rays per pixel,  

focusing with a lens 
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  Integrating what? 
  light sources: soft shadows 
 pixels: anti-aliasing 
  BRDF: glossy reflections 
  over Time: motion blur 
  over the lens: depth of field 
  over the hemisphere: indirect lighting 
  over light paths: global illumination 

  Generic method for computing multi-
dimensional integrals: 

Monte Carlo Integration 
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  Integral of an arbitrary function 
  Continuous problem  discretization 
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  Trapezoidal approximation: 
 Also Simpson’s rule, midpoint rule... 
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  Monte Carlo: random sampling 
 Don’t keep the distance between the n samples 
  But on average, expect it to be 1/n 
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  Take a square 
  Take a random point (x,y) in the square 
  Test whether it is inside the ¼ disc (x2+y2 < 1) 
  Probability is π /4  

x 

y 
Integral of the function 
equal to 1 on the disc, 0 
outside 
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  Probability is π /4  
  n = # points inside / # total points 
   π ≈ n * 4 
  Error depends on the number of samples 
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  Floor made of parallel strips of wood 
  Throw needles on the floor 
 The needle either crosses the line or it doesn’t 
 Count number of time it crosses the line 
 Divide by total number of throws 

  Result is connected to π	


  P = 2l/tπ	
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  To compute π, Monte Carlo is not highly 
efficient 

  But convergence rate independent from 
dimension 

 Monte Carlo integration very efficient for 
higher dimensions 
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  Random variable x 
  Probability distribution: p(x) 
  Probability that this variable is between x and x+dx 

is p(x) dx 
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  Expected value is linear: 
   E[f1(x) + a f2(x)]   =   E[f1(x)] + a E[f2(x)] 
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  Take the function f(x) with x in [a b]  
  We want to compute:  

  Take a random variable x 
  If x has a uniform distribution, I=E[f(x)] 
  By definition of expected value 
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  Take N random variables, independent, 
identical distribution (IID) xi (N échantillons) 
  Same probability (here uniform) 

  Define:   

  By linearity of expected value:  
E[FN] = E[f(x)] 

Monte Carlo  
estimator  
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  Measures the distance to expected value 
  Standard deviation σ: square root of variance 
  Properties: 
  σ2[x+y]  =  σ2[x] + σ2[y] + 2 Cov[x,y] 
  σ2[ax]  =  a2 σ2[x] 
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  Independent variables  Cov[xi, xj]=0 si i≠j 

  thus σ (error) decreases with 
 slow convergence 
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  In theory, I=1.0 
  In practice, with a uniform distribution 

N 

σ2	



- σ2 

error 
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  Few restrictions on the function to integrate 
 No requirements on continuity, regularity … 
 Only needs sampling on a single point 

  Same convergence rate on higher dimensions 
  Very simple 
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  Noise 
  Slow convergence 

  Efficient implementation harder 

41 



42 

  On ray for every pixel 
  For each visible point : random sampling of rays, 

accumulate radiance 
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  On ray for every pixel 
  For each visible point : random sampling of rays, 

accumulate radiance 
  Keep going, recursively 
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  On ray for every pixel 
  For each visible point : random sampling of rays, 

accumulate radiance 
  Keep going, recursively 
  Sample the light source each time 
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  Trace only one ray at each recursion 
  But trace several (hundreds of) primary rays 

for each pixel 
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  1 sample per pixel 
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  256 samples per pixel 
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  10 paths/pixel 
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  10 paths/pixel 
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  100 paths/pixel 
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  Pseudo-random sampling sequence 
  The structure appears: 
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  Send rays randomly 
  Sample the rendering equation 
  No requirements 
 Any kind of reflectance 
 Any kind of geometry 

  Highly adaptive 
  Can be noisy and / or very slow 
 Reducing variance: importance sampling 
  Speed-up: irradiance caching 
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Random sampling Optimal sampling 
(Veach and Guibas 1995) 



  N samples with probability p(x) 
  Monte Carlo estimator becomes: 

  Probability p allows a better sampling of the 
domain 

How can we choose p? 
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  Integral over hemisphere of directions 
  BRDF x cosine x incoming light 

Slide courtesy of Jason Lawrence 



5 Samples/Pixel 

Slide courtesy of Jason Lawrence 



25 Samples/Pixel 

Slide courtesy of Jason Lawrence 



75 Samples/Pixel 

Slide courtesy of Jason Lawrence 



  Choose p wisely to reduce variance: 
 p must look like f 
 Doesn’t change convergence with  

(reduces the constant) 
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  Indirect lighting changes slowly in space 
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  Indirect lighting changes slowly in space 

65 



  Indirect lighting changes slowly in space 
  Interpolate between neighboring values 
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  Indirect lighting changes slowly in space 
  Interpolate between cached values 
  But full computation for direct lighting 
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  Yellow dots: computation of indirect lighting 
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Path Tracing Path tracing + Irradiance cache 
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Path Tracing Path tracing + Irradiance cache 



  Pre-computation: throw rays from the light 
sources 
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  Store photons (position + intensity + direction) 
on the geometry or inside an data structure 
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  Throw primary rays 
  Radiance for secondary rays by gathering 

radiance from neighbouring photons 
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Photon map Rendu final 



  Jensen (1996) 
 Direct visualization of the photon map: 6min 
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  Jensen (1996) 
  Final gather pass: + 51 mn 

76 



  Walter (1998) 
 Global Illumination: 28h 
  Interactive rendering 
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Mitsuba (http://www.mitsuba-renderer.org/) 



  Separate Photon 
map for refraction 

79 



V-Ray 1.5 for 3ds Max 
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  CyberMotion 3D-Designer  

81 

5 millions photons from a single light source 
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CyberMotion 3D-Designer 
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Yafray : ray tracer open source with Photon Mapping,  
integrated with Blender.  



84 http://en.wikipedia.org/wiki/POV-Ray 



  Pre-computation view-point independent 
  Storage on the surfaces 

  Good representation for caustics 
  Noisy: smoothing based on the samples 
 Reconstruction of the radiance function 

  Can be coded in two passes with a ray-tracer 
 One pass for each direction 
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  Taking into 
account all inter-
reflections 
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Ray-tracing 

Sculpture by John Ferren 

Photo Radiosité 



  Hypothesis: diffuse materials 
  Radiance, BRDF… are independent from the 

direction 
  Simplifies the rendering equation 
  Radiosity method: 
 Discretize this equation in object space  
  (viewpoint independent) 

  Solve the discretized equation 
 Render the scene using the illumination 
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  Environnement échantillonné sous la forme 
de patchs discrets, de taille finie, émettant et 
réfléchissant la lumière uniformément sur 
leurs surface (choix d’une base)  
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  Simplified: 

  Discrete version: 

90 

L(x,d) = E(x,d) + ∫ ρ(x,d,d’) v(x,x’) G(x,x’) dA 

B(x) = E(x) + ρx ∫ B(x’) v(x,x’) G(x,x’) dA	



Bi = Ei + ρi Σj Fji Bj Aj/Ai	



  Bi, Bj: radiosity for patches i et j (in W/m2) 
  Ei: emission for patch i 
  Fji form factor, characterizes proportion of energy leaving 
patch j arriving on i 
  Ai et Aj : areas for patches i and j 

Form factor 



  Grouping together all elements: 

  Matrix equation, to solve iteratively 
 Relaxation methods ( gathering / shooting ) 
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B0 

Bn 

= 
E0 

En 

B0 

Bn 

+	

 ρi Fji  ⇔  B = E + MB 



  Form factor Fij from a patch Ai towards a 
patch Aj : 

  Problem: computing this integral (4D). No 
analyticl solution 
 Approximated solutions: projection on a 

hemisphere or a hemicube. 
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Fij= ∫Ai
 ∫Aj

v(x,x’)                     dxdx’ 
πr² 

cos(θ)cos(θ’) 



  Pipeline for computing global illumination : 
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Solve the system 

Scene Modelling 

Rendering/display 

Compute Form Factors 



  Iterative solving: 
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  What must be recomputed if  
something changes in the scene? 
 Geometry 
 Reflectance properties 
 Viewpoint 



Scene Modelling 

Solve the system 

Rendering/display 

Compute Form Factors 
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Change the 
geometry 

Change the  
materials 

Change the 
viewpoint 
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Museum simulation. Cornell University. 50,000 patches. 98 



  Computations are viewpoint independent 
  Okay for complex scenes 
  Solving light exchanges  

  Interactive rendering 
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  Memory cost 
  Only diffuse materials 
  « final gather » using Ray-Tracing 

  Meshing 
 Discontinuity mesh 

  Long pre-computations 
  Possible speed-up: hierarchical radiosity 
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  Computation at different hierarchical levels 
  Push-pull 
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⇒	
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Shadow leak Light leak 
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Regular subdivision 

Discontinuity meshing 
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Rendu Scan-line. 
(3DS MAX) 

Rendu en radiosité et 
lancer de rayons. 
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  Used by architects (Lightscape) 
  Used to precompute diffuse lighting for some 

video games (light maps) 

  Not an active research topic anymore 
 Monte-Carlo is more generic 
  But pre-computed radiance transfer is similar  

(used e.g. in Max Payne 2) 


