

2

Indirect :  
global problem

Direct :
local properties

3

+ Indirect Direct

4

Direct

+ Indirect

  Interactions between objects
  Light transport
  Reflections, refraction, diffusion
  Conservation of light energy

5

6

L(x,d) = E(x,d) + ∫ ρ(x,d,d’) v(x,x’) L(x’,d’) G(x,x’) dA

X'
L(x,d)

X

d d' θ

Radiance leaving point x  
in the direction d

R
adiance unit: W

att/m
²/sr

7

L(x,d) = E(x,d) + ∫ ρ(x,d,d’) v(x,x’) L(x’,d’) G(x,x’) dA

X'
L(x,d)

X

d d' θ

Radiance emitted from x:  
non-zero only if x belongs to a light source

R
adiance unit: W

att/m
²/sr

8

L(x,d) = E(x,d) + ∫ ρ(x,d,d’) v(x,x’) L(x’,d’) G(x,x’) dA

X'
L(x,d)

X

d d' θ

Integrating the contribution
from all the surfaces

R
adiance unit: W

att/m
²/sr

9

X'
L(x,d)

X

d d' θ

Incoming Radiance
from point x’ in the direction d’

R
adiance unit: W

att/m
²/sr

L(x,d) = E(x,d) + ∫ ρ(x,d,d’) v(x,x’) L(x’,d’) G(x,x’) dA

10

L(x,d) = E(x,d) + ∫ ρ(x,d,d’) v(x,x’) L(x’,d’) G(x,x’) dA

X'
L(x,d)

X

d d' θ

Multiplication by the reflectance (BRDF)
of the surface at point x

R
adiance unit: W

att/m
²/sr

11

L(x,d) = E(x,d) + ∫ ρ(x,d,d’) v(x,x’) L(x’,d’) G(x,x’) dA

X'
L(x,d)

X

d d' θ

Visibility between x and x’
1 when the two points are visible from each

other, 0 otherwise

R
adiance unit: W

att/m
²/sr

12

L(x,d) = E(x,d) + ∫ ρ(x,d,d’) v(x,x’) L(x’,d’) G(x,x’) dA

X'
L(x,d)

X

d d' θ

Geometric factor depending on the
surfaces x and x’

R
adiance unit: W

att/m
²/sr

13

X'
L(x,d)

X

d d' θ

Full general analytical solution impossible

R
adiance unit: W

att/m
²/sr

L(x,d) = E(x,d) + ∫ ρ(x,d,d’) v(x,x’) L(x’,d’) G(x,x’) dA

  Radiosity
 Discretize the geometry:  

exchanges between patches
 All objects are diffuse

  Ray-tracing and its extensions  
(Monte-Carlo path tracing, Photon mapping…)
  Sampling the integral
 Optical laws

14

  One ray per pixel
  Three new rays are created

16

réflection

réfraction

ombre

  Soft shadows
  Several rays for each  

extended light source

17

Point light source

Extended light source

  Soft shadows
  Several rays for each extended light source

  Anti-aliasing
  Several rays for each pixel

18

1 rayon 2 rayons 3 rayons

  Soft shadows
  Several rays for each extended light source

  Anti-aliasing
  Several rays for each pixel

  Glossy Reflection
  Several rays are reflected

19

  Soft shadows
  Several rays for each extended light source

  Anti-aliasing
  Several rays for each pixel

  Glossy Reflection
  Several rays are reflected

  Motion blur
  Several rays during time

20

  Soft shadows
  Several rays for each extended light source

  Anti-aliasing
  Several rays for each pixel

  Glossy Reflection
  Several rays are reflected

  Motion blur
  Several rays during time

  Depth of field
  Several rays per pixel,  

focusing with a lens

21

  Soft shadows
  Several rays for each extended light source

  Anti-aliasing
  Several rays for each pixel

  Glossy Reflection
  Several rays are reflected

  Motion blur
  Several rays during time

  Depth of field
  Several rays per pixel,  

focusing with a lens

22

  Integrating what?
  light sources: soft shadows
 pixels: anti-aliasing
  BRDF: glossy reflections
  over Time: motion blur
  over the lens: depth of field
  over the hemisphere: indirect lighting
  over light paths: global illumination

  Generic method for computing multi-
dimensional integrals:

Monte Carlo Integration

25

  Integral of an arbitrary function
  Continuous problem  discretization

26

  Trapezoidal approximation:
 Also Simpson’s rule, midpoint rule...

27

  Monte Carlo: random sampling
 Don’t keep the distance between the n samples
  But on average, expect it to be 1/n

28

  Take a square
  Take a random point (x,y) in the square
  Test whether it is inside the ¼ disc (x2+y2 < 1)
  Probability is π /4

x

y
Integral of the function
equal to 1 on the disc, 0
outside

29

  Probability is π /4
  n = # points inside / # total points
  π ≈ n * 4
  Error depends on the number of samples

30

  Floor made of parallel strips of wood
  Throw needles on the floor
 The needle either crosses the line or it doesn’t
 Count number of time it crosses the line
 Divide by total number of throws

  Result is connected to π	

  P = 2l/tπ	

31

  To compute π, Monte Carlo is not highly
efficient

  But convergence rate independent from
dimension

 Monte Carlo integration very efficient for
higher dimensions

32

  Random variable x
  Probability distribution: p(x)
  Probability that this variable is between x and x+dx

is p(x) dx

33

  Expected value is linear:
 E[f1(x) + a f2(x)] = E[f1(x)] + a E[f2(x)]

34

  Take the function f(x) with x in [a b]
  We want to compute:

  Take a random variable x
  If x has a uniform distribution, I=E[f(x)]
  By definition of expected value

35

  Take N random variables, independent,
identical distribution (IID) xi (N échantillons)
  Same probability (here uniform)

  Define:

  By linearity of expected value:  
E[FN] = E[f(x)]

Monte Carlo  
estimator

36

  Measures the distance to expected value
  Standard deviation σ: square root of variance
  Properties:
  σ2[x+y] = σ2[x] + σ2[y] + 2 Cov[x,y]
  σ2[ax] = a2 σ2[x]

37

  Independent variables  Cov[xi, xj]=0 si i≠j

  thus σ (error) decreases with
 slow convergence

38

  In theory, I=1.0
  In practice, with a uniform distribution

N

σ2	

- σ2

error

39

  Few restrictions on the function to integrate
 No requirements on continuity, regularity …
 Only needs sampling on a single point

  Same convergence rate on higher dimensions
  Very simple

40

  Noise
  Slow convergence

  Efficient implementation harder

41

42

  On ray for every pixel
  For each visible point : random sampling of rays,

accumulate radiance

43

  On ray for every pixel
  For each visible point : random sampling of rays,

accumulate radiance
  Keep going, recursively

44

  On ray for every pixel
  For each visible point : random sampling of rays,

accumulate radiance
  Keep going, recursively
  Sample the light source each time

45

  Trace only one ray at each recursion
  But trace several (hundreds of) primary rays

for each pixel

46

  1 sample per pixel

47

  256 samples per pixel

48

  10 paths/pixel

49

  10 paths/pixel

50

  100 paths/pixel

51

  Pseudo-random sampling sequence
  The structure appears:

52

  Send rays randomly
  Sample the rendering equation
  No requirements
 Any kind of reflectance
 Any kind of geometry

  Highly adaptive
  Can be noisy and / or very slow
 Reducing variance: importance sampling
  Speed-up: irradiance caching

53

54

Random sampling Optimal sampling 
(Veach and Guibas 1995)

  N samples with probability p(x)
  Monte Carlo estimator becomes:

  Probability p allows a better sampling of the
domain

How can we choose p?

55

  Integral over hemisphere of directions
  BRDF x cosine x incoming light

Slide courtesy of Jason Lawrence

5 Samples/Pixel

Slide courtesy of Jason Lawrence

25 Samples/Pixel

Slide courtesy of Jason Lawrence

75 Samples/Pixel

Slide courtesy of Jason Lawrence

  Choose p wisely to reduce variance:
 p must look like f
 Doesn’t change convergence with  

(reduces the constant)

61

62

63

  Indirect lighting changes slowly in space

64

  Indirect lighting changes slowly in space

65

  Indirect lighting changes slowly in space
  Interpolate between neighboring values

66

  Indirect lighting changes slowly in space
  Interpolate between cached values
  But full computation for direct lighting

67

  Yellow dots: computation of indirect lighting

68

69

Path Tracing Path tracing + Irradiance cache

70

Path Tracing Path tracing + Irradiance cache

  Pre-computation: throw rays from the light
sources

71

  Store photons (position + intensity + direction)
on the geometry or inside an data structure

72

  Throw primary rays
  Radiance for secondary rays by gathering

radiance from neighbouring photons

74

Photon map Rendu final

  Jensen (1996)
 Direct visualization of the photon map: 6min

75

  Jensen (1996)
  Final gather pass: + 51 mn

76

  Walter (1998)
 Global Illumination: 28h
  Interactive rendering

77

78

Mitsuba (http://www.mitsuba-renderer.org/)

  Separate Photon 
map for refraction

79

V-Ray 1.5 for 3ds Max

80

  CyberMotion 3D-Designer

81

5 millions photons from a single light source

82

CyberMotion 3D-Designer

83

Yafray : ray tracer open source with Photon Mapping,  
integrated with Blender.

84 http://en.wikipedia.org/wiki/POV-Ray

  Pre-computation view-point independent
  Storage on the surfaces

  Good representation for caustics
  Noisy: smoothing based on the samples
 Reconstruction of the radiance function

  Can be coded in two passes with a ray-tracer
 One pass for each direction

85

  Taking into
account all inter-
reflections

87

Ray-tracing

Sculpture by John Ferren

Photo Radiosité

  Hypothesis: diffuse materials
  Radiance, BRDF… are independent from the

direction
  Simplifies the rendering equation
  Radiosity method:
 Discretize this equation in object space
  (viewpoint independent)

  Solve the discretized equation
 Render the scene using the illumination

88

  Environnement échantillonné sous la forme
de patchs discrets, de taille finie, émettant et
réfléchissant la lumière uniformément sur
leurs surface (choix d’une base)

89

  Simplified:

  Discrete version:

90

L(x,d) = E(x,d) + ∫ ρ(x,d,d’) v(x,x’) G(x,x’) dA

B(x) = E(x) + ρx ∫ B(x’) v(x,x’) G(x,x’) dA	

Bi = Ei + ρi Σj Fji Bj Aj/Ai	

  Bi, Bj: radiosity for patches i et j (in W/m2)
  Ei: emission for patch i
  Fji form factor, characterizes proportion of energy leaving
patch j arriving on i
  Ai et Aj : areas for patches i and j

Form factor

  Grouping together all elements:

  Matrix equation, to solve iteratively
 Relaxation methods (gathering / shooting)

91

B0

Bn

=
E0

En

B0

Bn

+	

 ρi Fji ⇔ B = E + MB

  Form factor Fij from a patch Ai towards a
patch Aj :

  Problem: computing this integral (4D). No
analyticl solution
 Approximated solutions: projection on a

hemisphere or a hemicube.

92

Fij= ∫Ai
 ∫Aj

v(x,x’) dxdx’
πr²

cos(θ)cos(θ’)

  Pipeline for computing global illumination :

93

Solve the system

Scene Modelling

Rendering/display

Compute Form Factors

  Iterative solving:

94

95

  What must be recomputed if  
something changes in the scene?
 Geometry
 Reflectance properties
 Viewpoint

Scene Modelling

Solve the system

Rendering/display

Compute Form Factors

96

Change the
geometry

Change the  
materials

Change the
viewpoint

97

Museum simulation. Cornell University. 50,000 patches. 98

  Computations are viewpoint independent
  Okay for complex scenes
  Solving light exchanges

  Interactive rendering

99

  Memory cost
  Only diffuse materials
  « final gather » using Ray-Tracing

  Meshing
 Discontinuity mesh

  Long pre-computations
  Possible speed-up: hierarchical radiosity

100

  Computation at different hierarchical levels
  Push-pull

101

⇒	

102

103

104

Shadow leak Light leak

105

Regular subdivision

Discontinuity meshing

106

107

108

109

Rendu Scan-line.
(3DS MAX)

Rendu en radiosité et 
lancer de rayons.

110

111

112

113

  Used by architects (Lightscape)
  Used to precompute diffuse lighting for some

video games (light maps)

  Not an active research topic anymore
 Monte-Carlo is more generic
  But pre-computed radiance transfer is similar  

(used e.g. in Max Payne 2)

