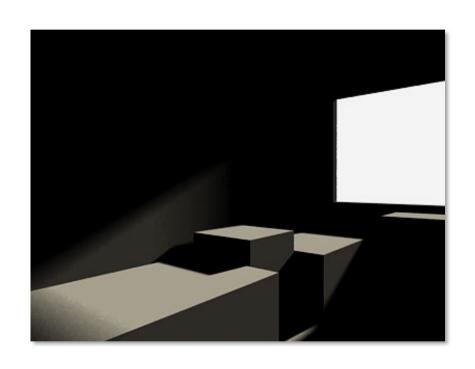
Global Illumination

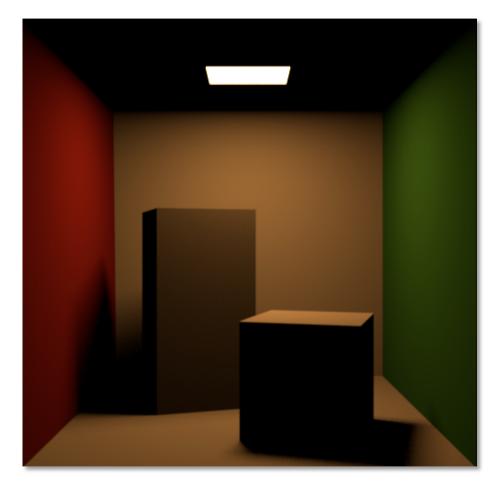
Direct and indirect lighting

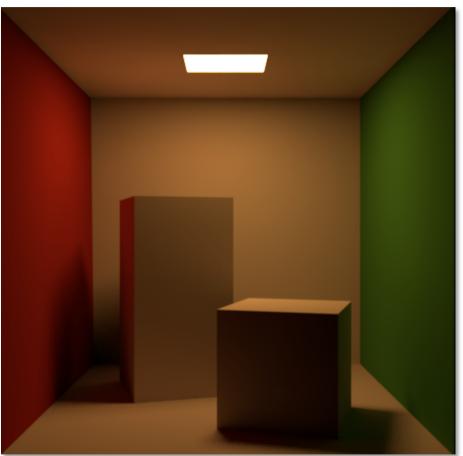


Direct : local properties

Indirect : global problem

Direct and indirect lighting

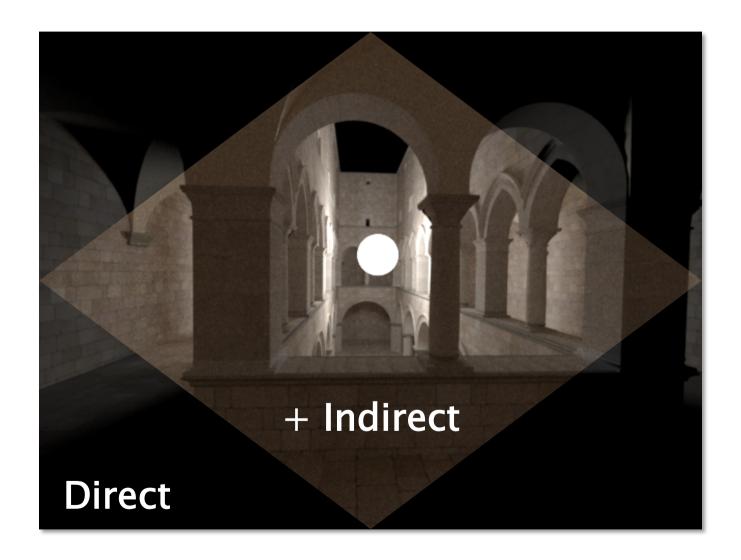




Direct

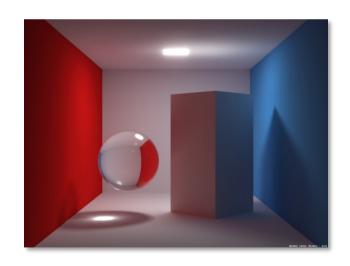
+ Indirect

Direct and indirect lighting

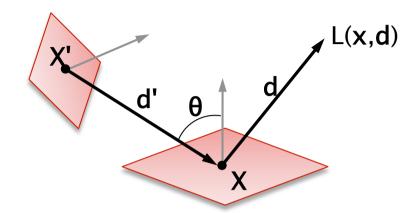


Global illumination

- Interactions between objects
- Light transport
- ▶ Reflections, refraction, diffusion
- Conservation of light energy

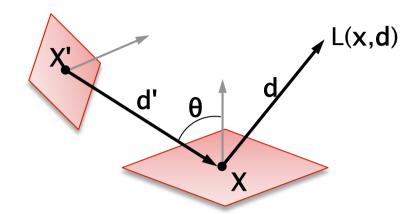






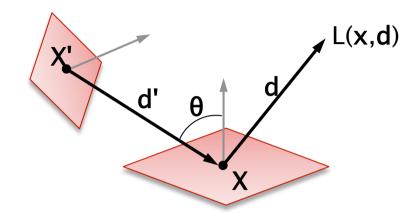
$$L(x,d) = E(x,d) + \int \rho(x,d,d') \ v(x,x') \ L(x',d') \ G(x,x') \ dA$$

Radiance leaving point **x** in the direction **d**



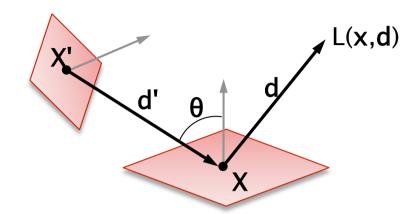
$$L(x,d) = \underbrace{E(x,d)} + \int \rho(x,d,d') \ v(x,x') \ L(x',d') \ G(x,x') \ dA$$

Radiance emitted from x: non-zero only if x belongs to a light source



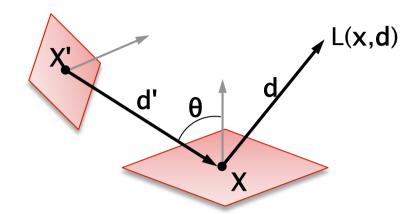
$$L(x,d) = E(x,d) + \int \rho(x,d,d') \ v(x,x') \ L(x',d') \ G(x,x') \ dA$$

Integrating the contribution from all the surfaces



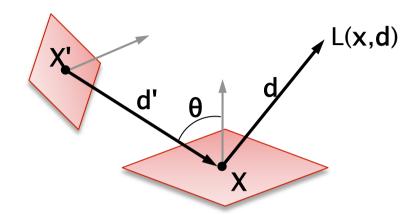
$$L(x,d) = E(x,d) + \int \rho(x,d,d') \ v(x,x') \ L(x',d') \ G(x,x') \ dA$$

Incoming Radiance from point x' in the direction d'



$$L(x,d) = E(x,d) + \int \rho(x,d,d') v(x,x') L(x',d') G(x,x') dA$$

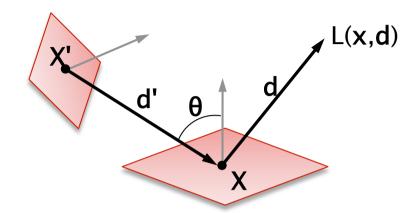
Multiplication by the reflectance (BRDF) of the surface at point x



$$L(x,d) = E(x,d) + \int \rho(x,d,d') \ v(x,x') \ L(x',d') \ G(x,x') \ dA$$

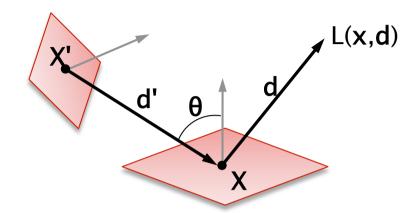
Visibility between x and x'

1 when the two points are visible from each other, 0 otherwise



$$L(x,d) = E(x,d) + \int \rho(x,d,d') \ v(x,x') \ L(x',d') \ G(x,x') \ dA$$

Geometric factor depending on the surfaces x and x'



$$L(x,d) = E(x,d) + \int \rho(x,d,d') \ v(x,x') \ L(x',d') \ G(x,x') \ dA$$

Full general analytical solution impossible

Two discretisations

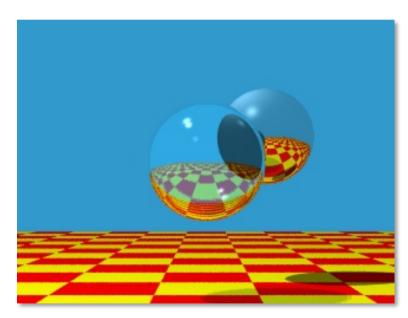
- Radiosity
 - Discretize the geometry: exchanges between patches
 - All objects are diffuse

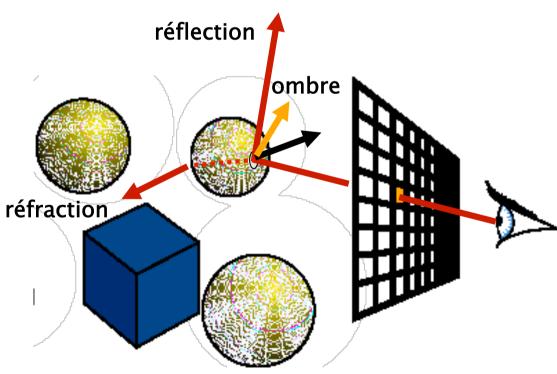
- ► Ray-tracing and its extensions (Monte-Carlo path tracing, Photon mapping...)
 - Sampling the integral
 - Optical laws

Ray tracing

« Whitted Ray Tracing » (1980)

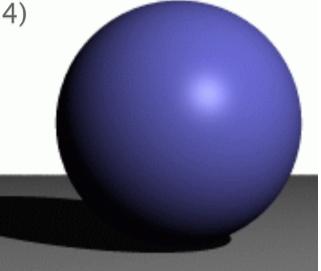
- One ray per pixel
- Three new rays are created



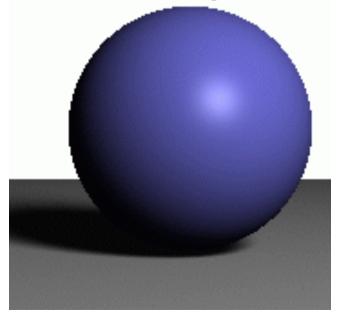


« Distributed Ray Tracing » Cook et al. (1984)

- Soft shadows
 - Several rays for each extended light source

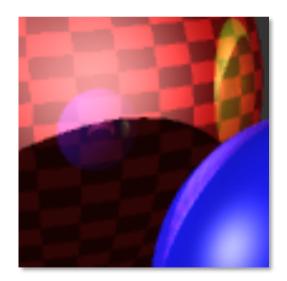


Extended light source

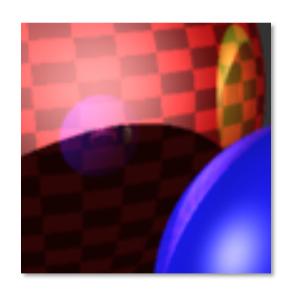


- « Distributed Ray Tracing » Cook et al. (1984)
 - Soft shadows
 - Several rays for each extended light source
 - Anti-aliasing
 - Several rays for each pixel

1 rayon

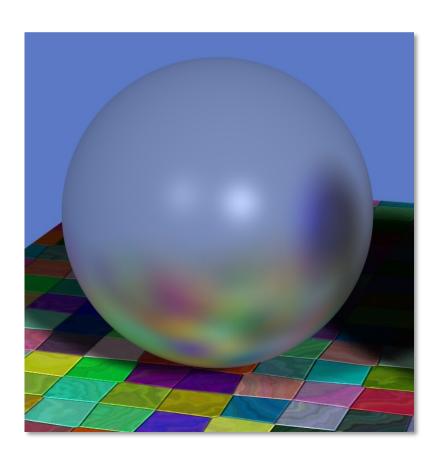


2 rayons



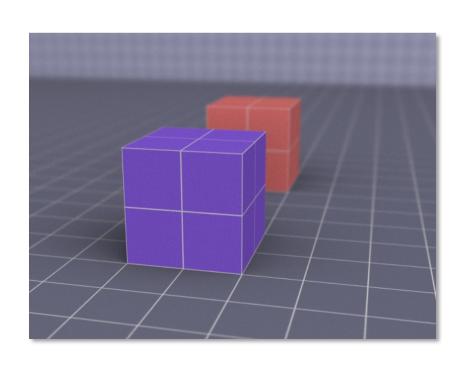
3 rayons

- « Distributed Ray Tracing » Cook et al. (1984)
 - Soft shadows
 - Several rays for each extended light source
 - Anti-aliasing
 - Several rays for each pixel
 - Glossy Reflection
 - Several rays are reflected

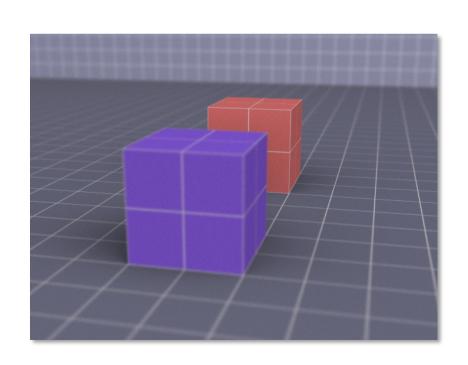


- « Distributed ray tracing » Cook et al. (1984)
 - Soft shadows
 - Several rays for each extended light source
 - Anti-aliasing
 - Several rays for each pixel
 - Glossy Reflection
 - Several rays are reflected
 - Motion blur
 - Several rays during time

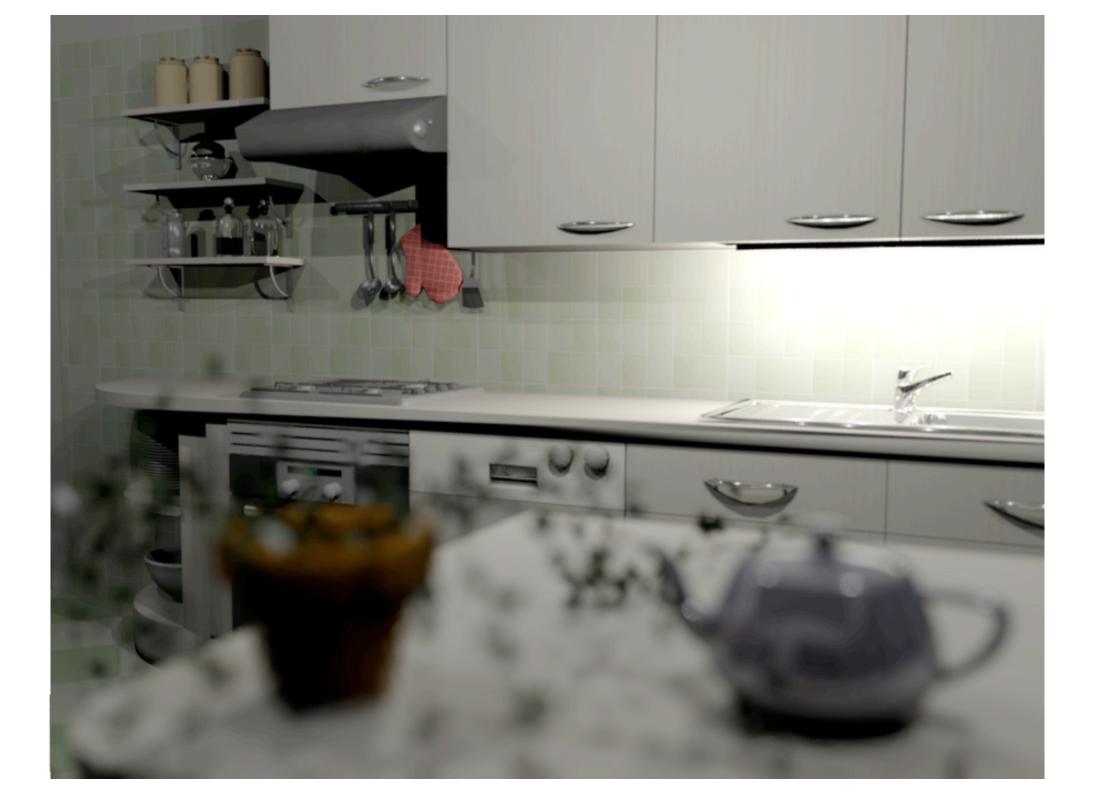
- « Distributed Ray Tracing » Cook et al. (1984)
 - Soft shadows
 - Several rays for each extended light source
 - Anti-aliasing
 - Several rays for each pixel
 - Glossy Reflection
 - Several rays are reflected
 - Motion blur
 - Several rays during time
 - Depth of field
 - Several rays per pixel, focusing with a lens



- « Distributed Ray Tracing » Cook et al. (1984)
 - Soft shadows
 - Several rays for each extended light source
 - Anti-aliasing
 - Several rays for each pixel
 - Glossy Reflection
 - Several rays are reflected
 - Motion blur
 - Several rays during time
 - Depth of field
 - Several rays per pixel, focusing with a lens







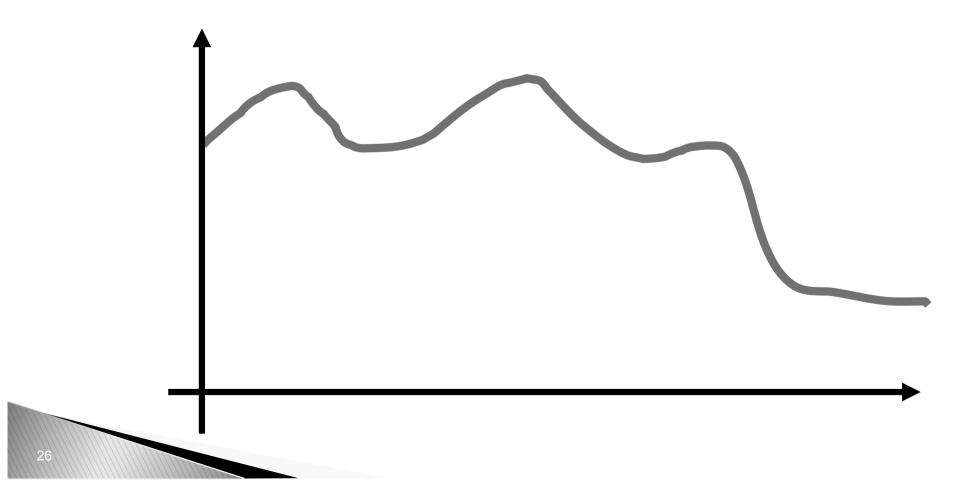
Ray tracing = integrating!

- Integrating what?
 - light sources: soft shadows
 - pixels: anti-aliasing
 - BRDF: glossy reflections
 - over Time: motion blur
 - over the lens: depth of field
 - over the hemisphere: indirect lighting
 - over light paths: global illumination
- Generic method for computing multidimensional integrals:

Monte Carlo Integration

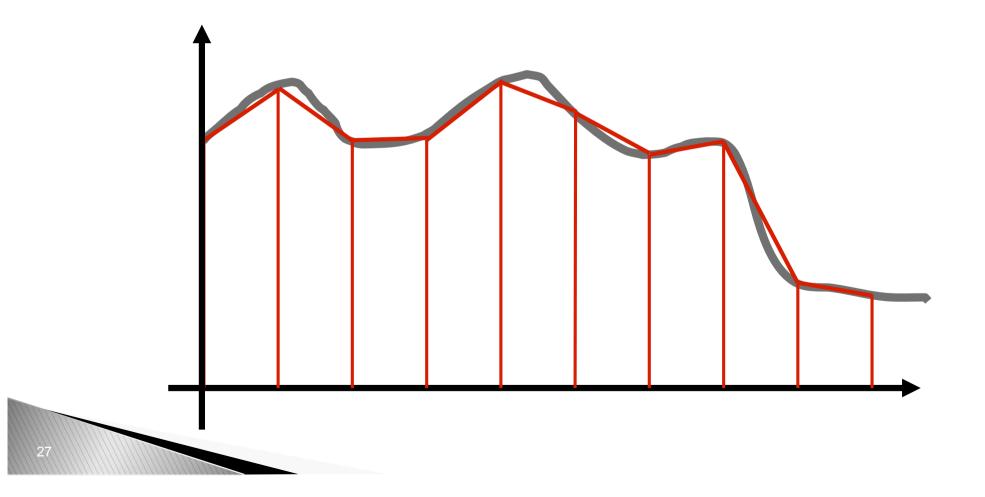
1D Integrals

- Integral of an arbitrary function
- ▶ Continuous problem ⇒ discretization



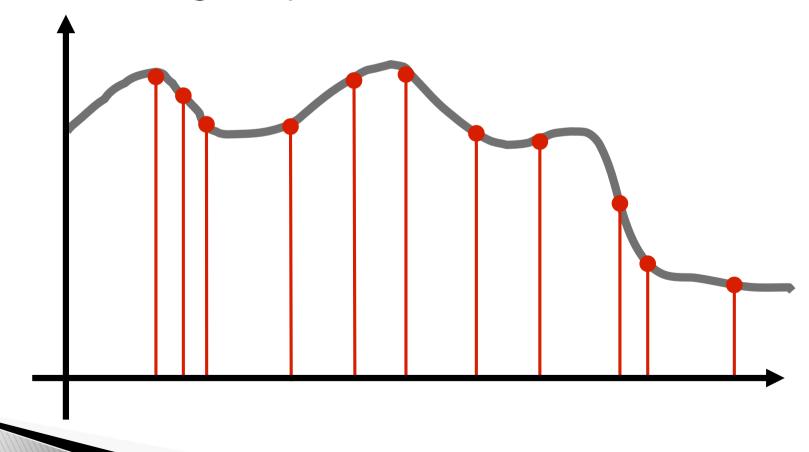
1D Integrals

- Trapezoidal approximation:
 - Also Simpson's rule, midpoint rule...



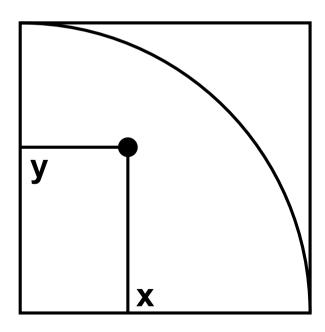
1D Integrals

- Monte Carlo: random sampling
 - Don't keep the distance between the n samples
 - But on average, expect it to be 1/n



Monte Carlo: computing π

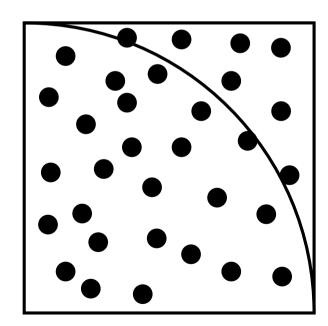
- Take a square
- ▶ Take a random point (x,y) in the square
- ▶ Test whether it is inside the $\frac{1}{4}$ disc (x²+y² < 1)
- Probability is $\pi / 4$



Integral of the function equal to 1 on the disc, 0 outside

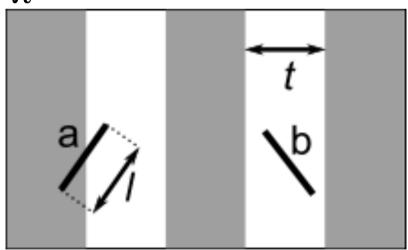
Monte Carlo: computing π

- Probability is $\pi/4$
- n = # points inside / # total points
- ▶ $\pi \approx n * 4$
- Error depends on the number of samples



See also: Buffon's needle

- Floor made of parallel strips of wood
- Throw needles on the floor
 - The needle either crosses the line or it doesn't
 - Count number of time it crosses the line
 - Divide by total number of throws
- \blacktriangleright Result is connected to π
- $P = 2I/t\pi$



Why not use Trapezoidal rule?

- To compute π , Monte Carlo is not highly efficient
- But convergence rate independent from dimension
- Monte Carlo integration very efficient for higher dimensions

Continuous random variables

- Random variable x
- Probability distribution: p(x)
 - Probability that this variable is between x and x+dx is p(x) dx

Expected value (mean)

$$E[x] = \int_{-\infty}^{\infty} x p(x) dx$$

$$E[f(x)] = \int_{-\infty}^{\infty} f(x)p(x)dx$$

Expected value is linear:

$$E[f_1(x) + a f_2(x)] = E[f_1(x)] + a E[f_2(x)]$$

Monte Carlo integration

- ▶ Take the function f(x) with x in [a b]
- We want to compute: $I = \int_a^b f(x) dx$
- Take a random variable x
- If x has a uniform distribution, I=E[f(x)]
 - By definition of expected value

Sum of random variables

- Take N random variables, independent, identical distribution (IID) x_i (N échantillons)
 - Same probability (here uniform)
- Define:

$$F_N = \frac{1}{N} \sum_{i=1}^n f(x_i)$$
 Monte Carlo estimator

By linearity of expected value: $E[F_N] = E[f(x)]$

Variance

$$\sigma^{2} = E[(x - E[x])^{2}] = \int_{-\infty}^{\infty} (x - E[x])^{2} p(x) dx$$

- Measures the distance to expected value
- \blacktriangleright Standard deviation σ : square root of variance
- Properties:
 - $\sigma^2[x+y] = \sigma^2[x] + \sigma^2[y] + 2 \text{ Cov}[x,y]$
 - $\bullet \sigma^2[ax] = a^2 \sigma^2[x]$

About the variance

$$\sigma^{2}[F_{N}] = \sigma^{2} \left[\sum_{j=1}^{n} \frac{f(x_{i})}{N} \right]$$

▶ Independent variables \Rightarrow Cov[x_i, x_j]=0 si i≠j

$$\sigma^2[F_N] = \frac{\sigma^2[f(x)]}{N}$$

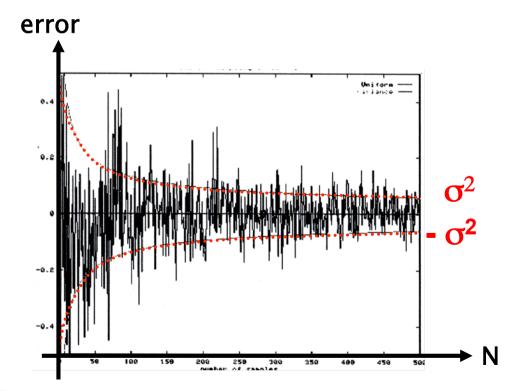
 \blacktriangleright thus σ (error) decreases with

⇒ slow convergence

Example

$$I = \int_0^1 5x^4 dx$$

- ▶ In theory, I=1.0
- In practice, with a uniform distribution



Monte Carlo integration: pros

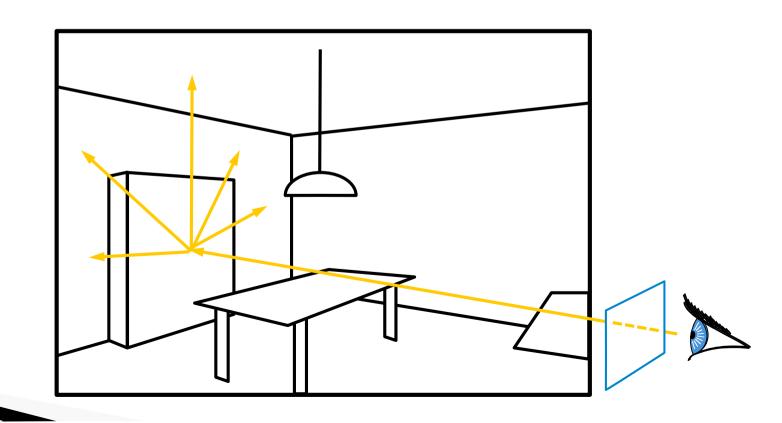
- Few restrictions on the function to integrate
 - No requirements on continuity, regularity ...
 - Only needs sampling on a single point
- Same convergence rate on higher dimensions
- Very simple

Monte Carlo integration: pros

- Noise
- Slow convergence
- Efficient implementation harder

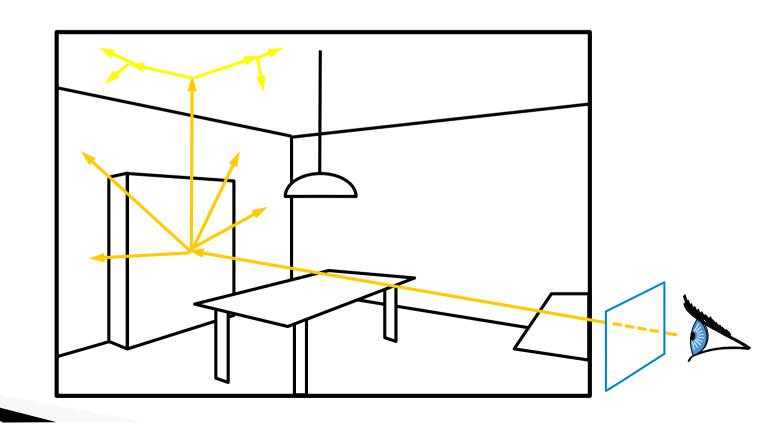
Monte Carlo methods

- On ray for every pixel
- ► For each visible point : random sampling of rays, accumulate radiance



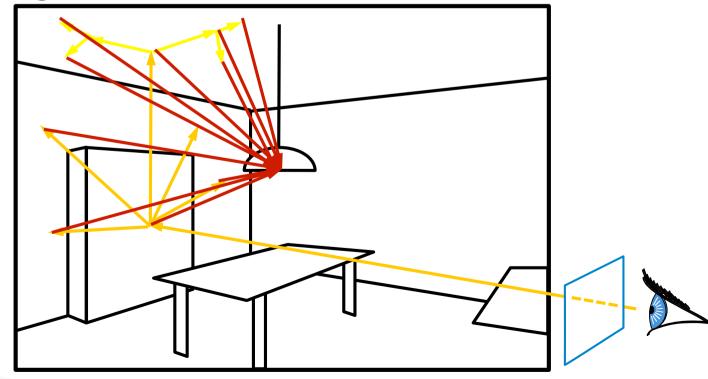
Monte Carlo methods

- On ray for every pixel
- For each visible point : random sampling of rays, accumulate radiance
- Keep going, recursively

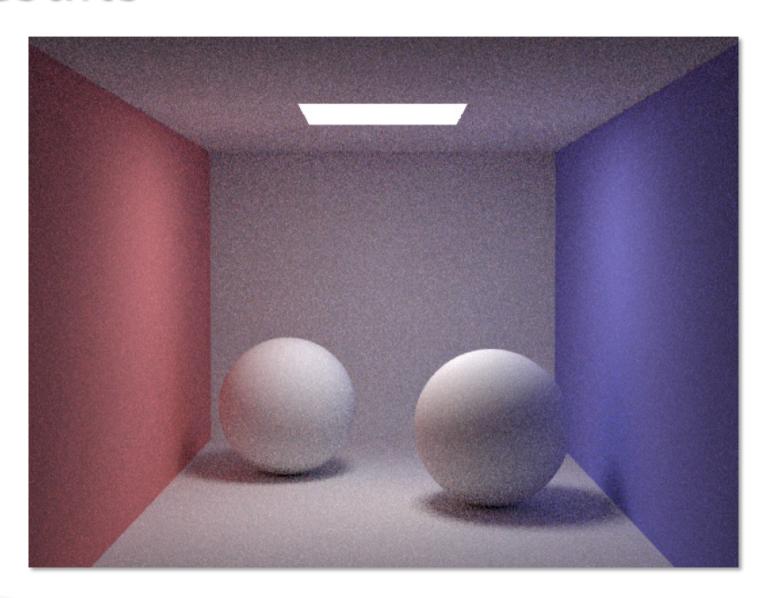


Monte Carlo methods

- On ray for every pixel
- For each visible point : random sampling of rays, accumulate radiance
- Keep going, recursively
- Sample the light source each time

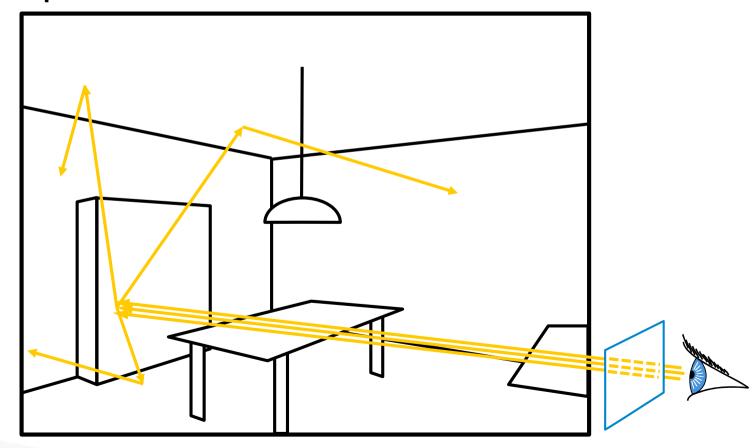


Results



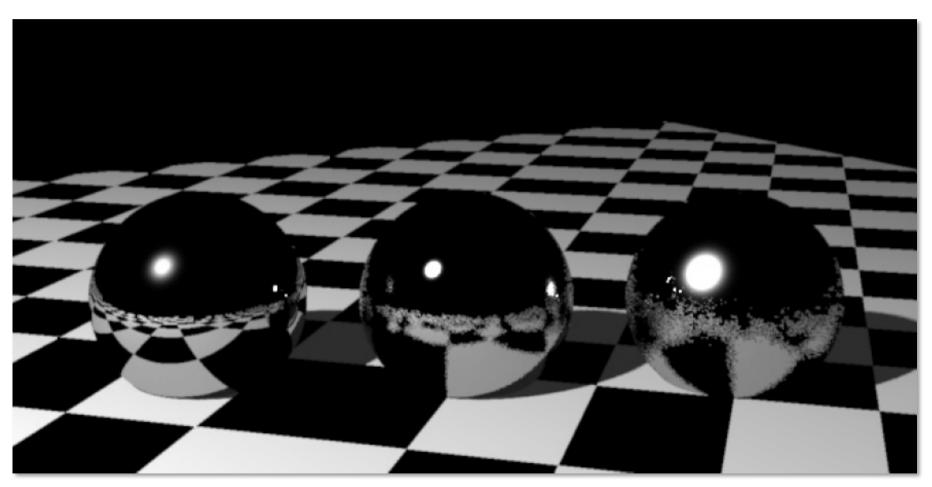
Monte Carlo Path Tracing

- Trace only one ray at each recursion
- But trace several (hundreds of) primary rays for each pixel



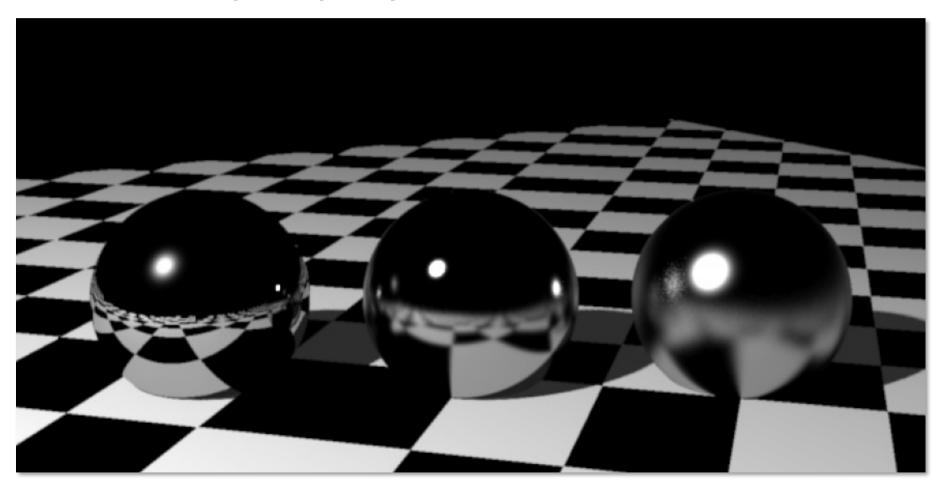
Results

▶ 1 sample per pixel



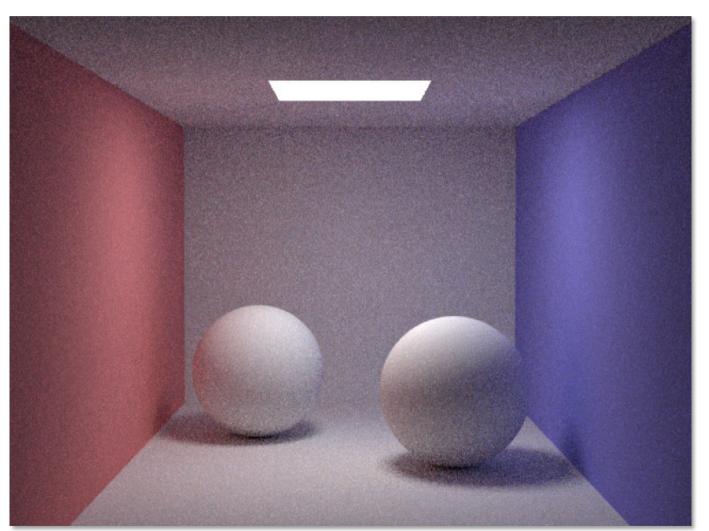
Results

▶ 256 samples per pixel



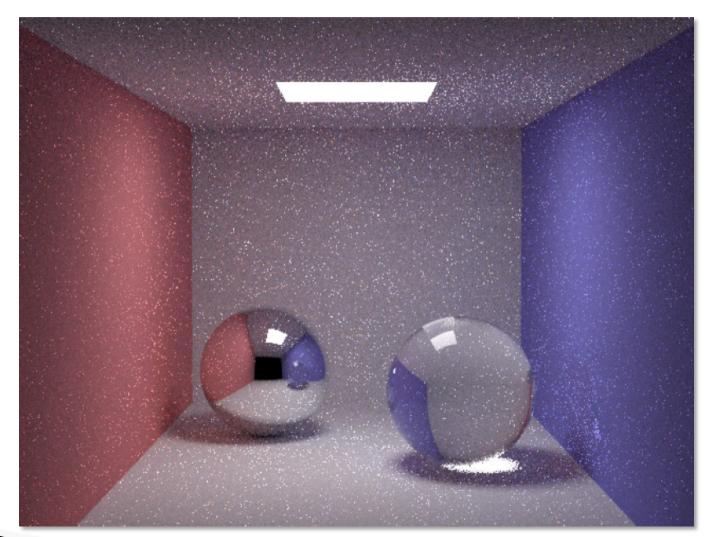
Results: diffuse materials

▶ 10 paths/pixel



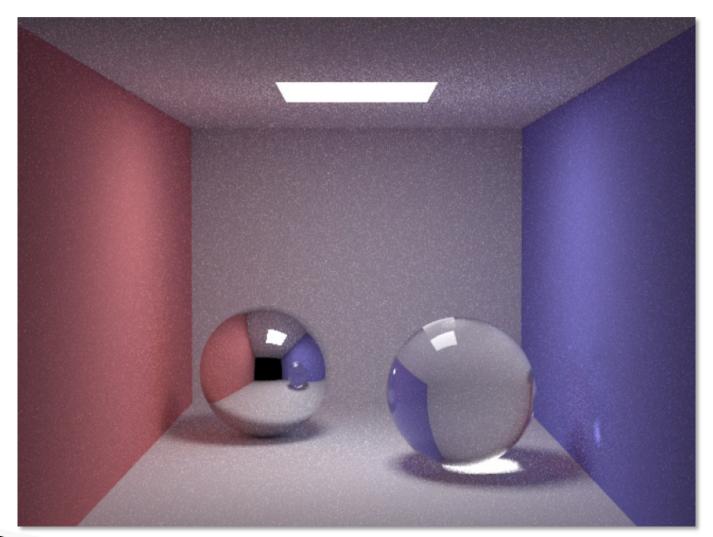
Results: shiny materials

▶ 10 paths/pixel



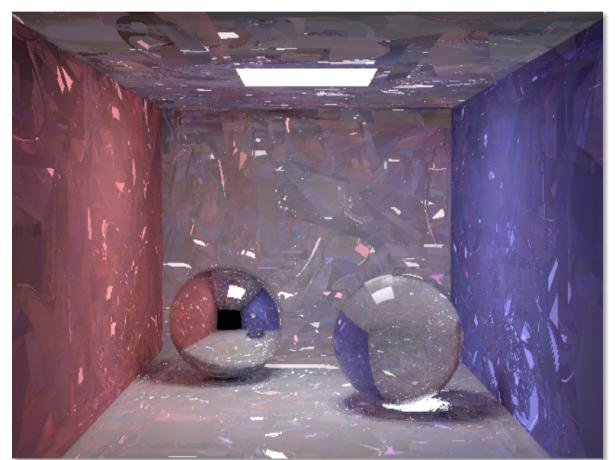
Results: shiny materials

▶ 100 paths/pixel



Why random sampling?

- Pseudo-random sampling sequence
- ▶ The structure appears:



Summary

- Send rays randomly
- Sample the rendering equation
- No requirements
 - Any kind of reflectance
 - Any kind of geometry
- Highly adaptive
- Can be noisy and / or very slow
 - Reducing variance: importance sampling
 - Speed-up: irradiance caching

Importance sampling

Random sampling

Optimal sampling (Veach and Guibas 1995)

Non-uniform distribution

- N samples with probability p(x)
- Monte Carlo estimator becomes:

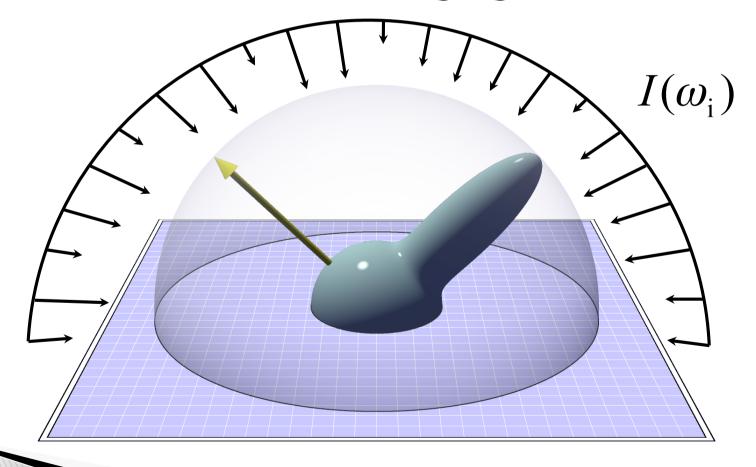
$$F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)}$$

Probability p allows a better sampling of the domain

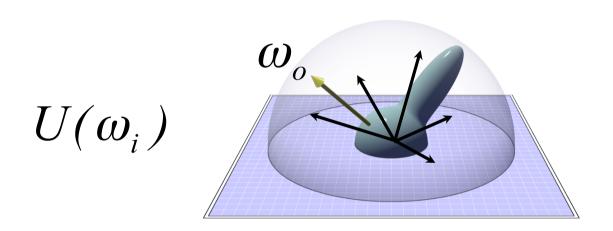
How can we choose p?

Example: glossy reflections

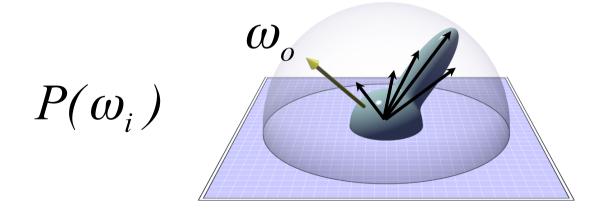
- Integral over hemisphere of directions
- ▶ BRDF x cosine x incoming light



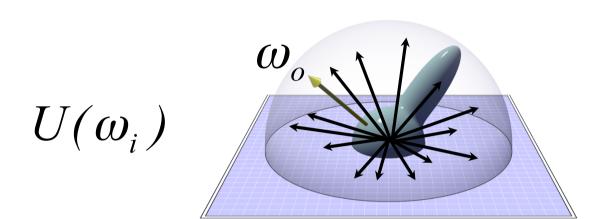
Sampling a BRDF



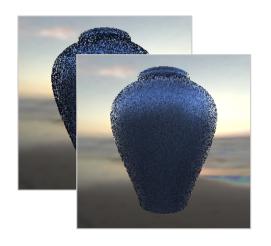
5 Samples/Pixel

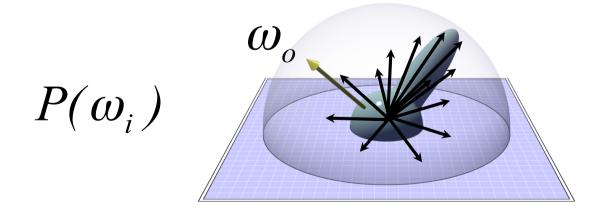


Sampling a BRDF

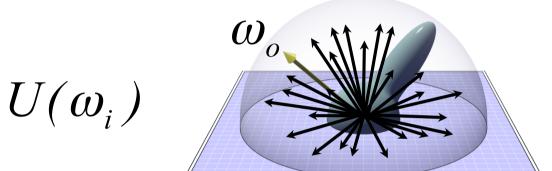


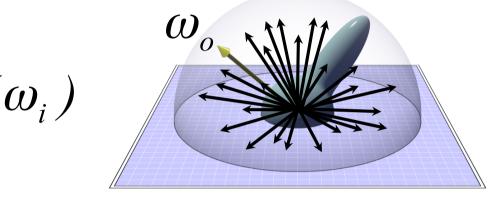
25 Samples/Pixel

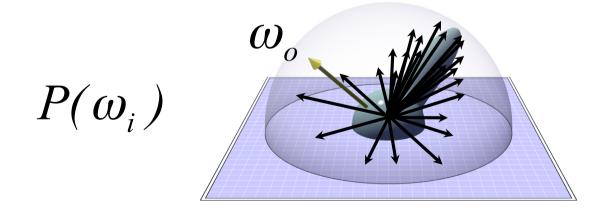




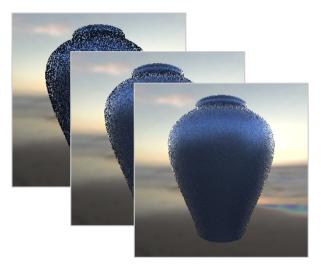
Sampling a BRDF







75 Samples/Pixel



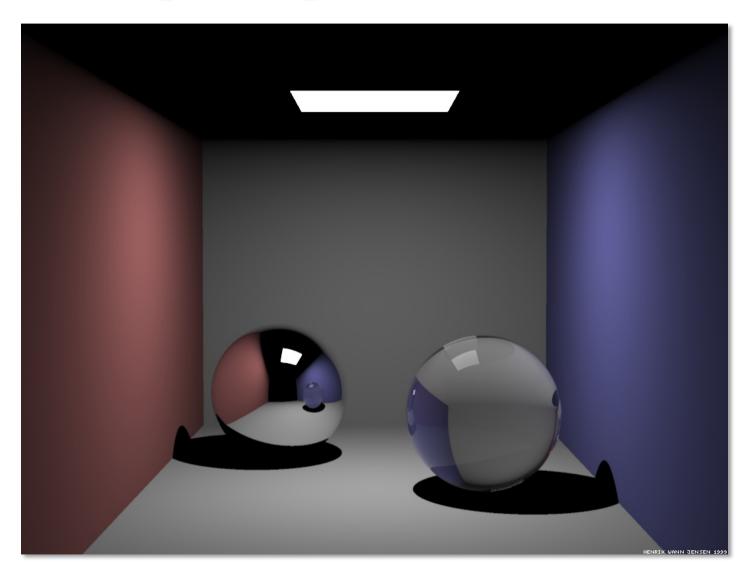
Slide courtesy of Jason Lawrence

Importance sampling

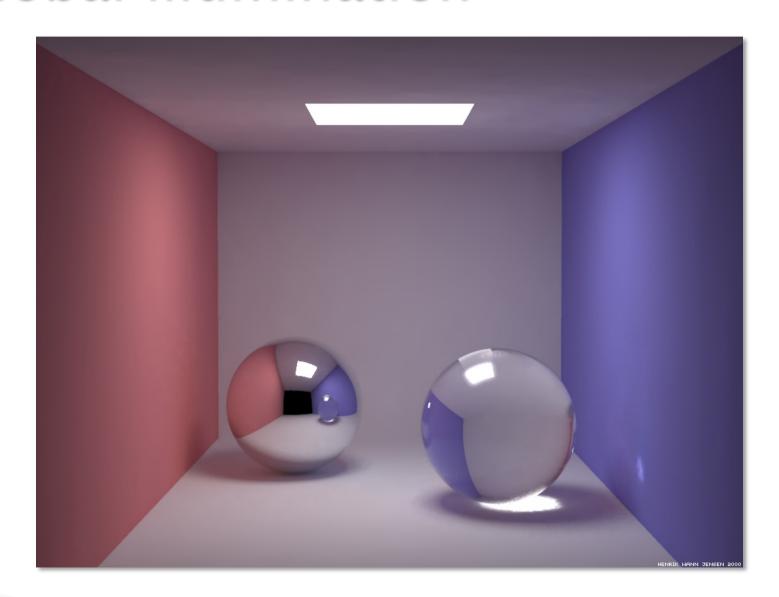
$$F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)}$$

- Choose p wisely to reduce variance:
 - p must look like f
 - Doesn't change convergence with \sqrt{N} (reduces the constant)

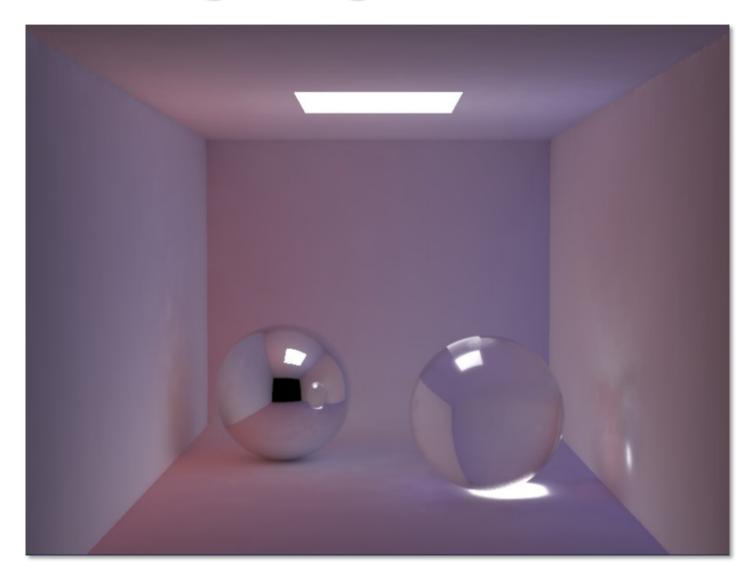
Direct lighting



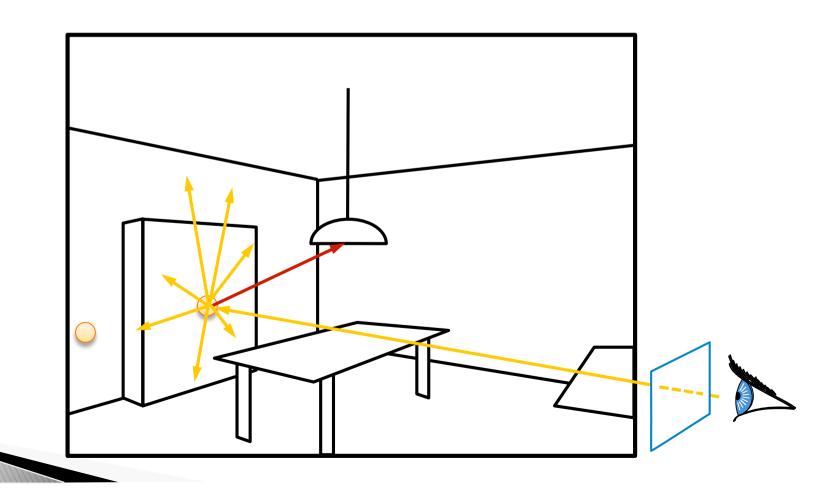
Global illumination



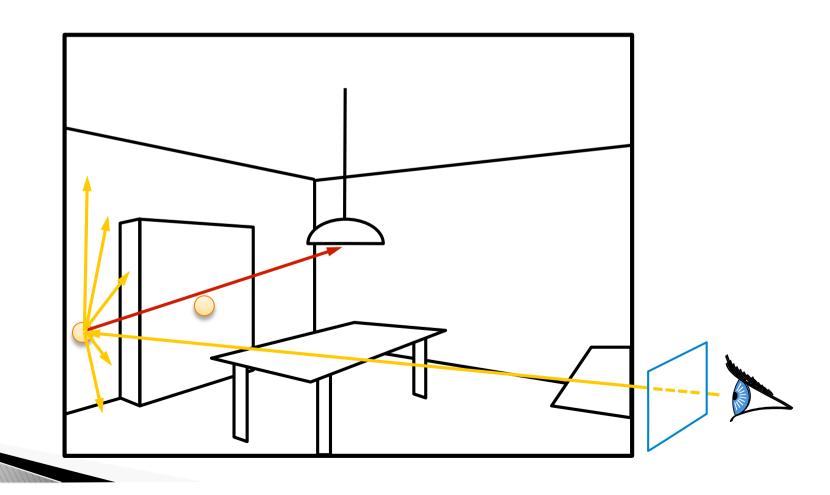
Indirect lighting



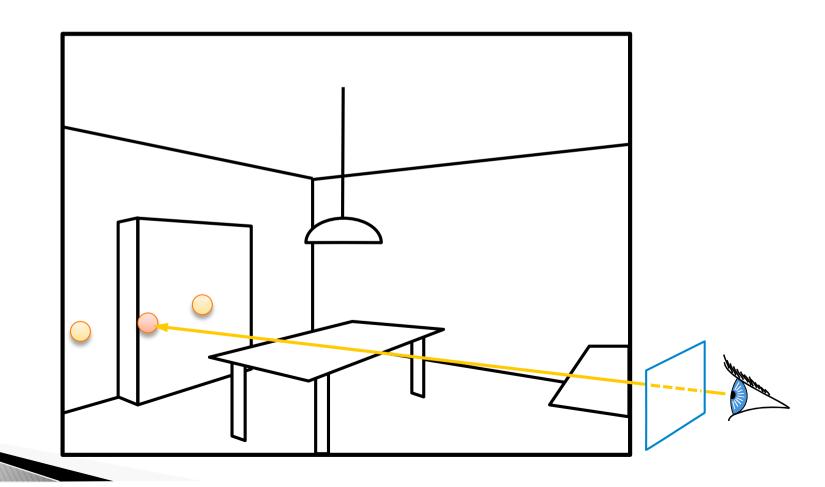
▶ Indirect lighting changes slowly in space



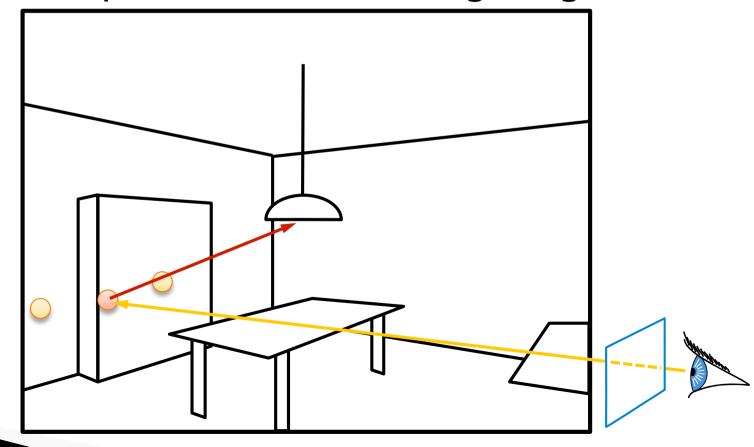
▶ Indirect lighting changes slowly in space



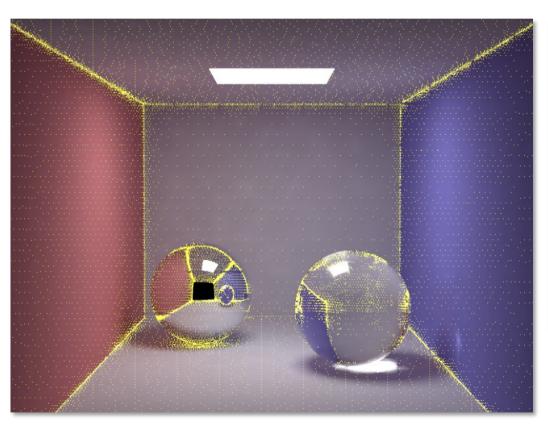
- Indirect lighting changes slowly in space
- Interpolate between neighboring values

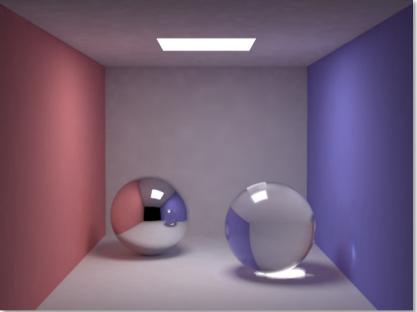


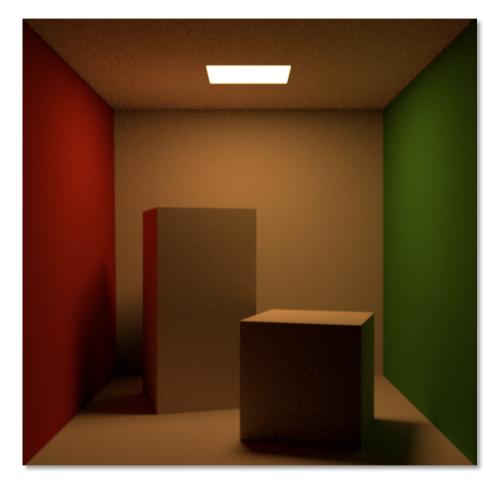
- Indirect lighting changes slowly in space
- Interpolate between cached values
- But full computation for direct lighting



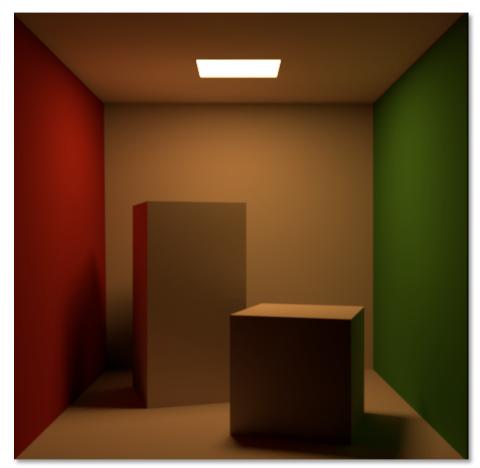
Yellow dots: computation of indirect lighting







Path Tracing



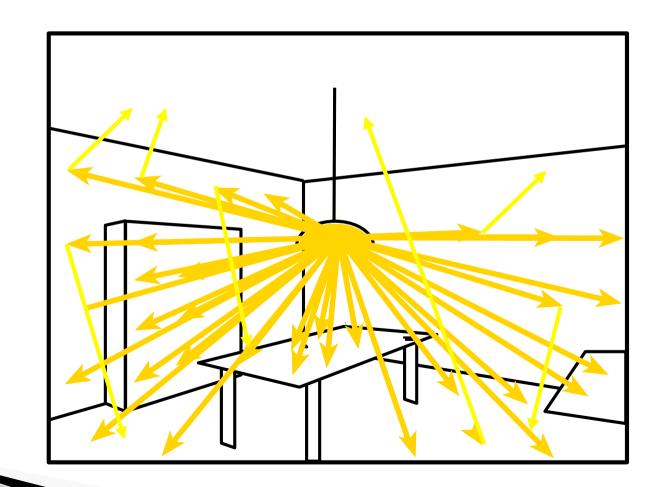
Path tracing + Irradiance cache

Path Tracing

Path tracing + Irradiance cache

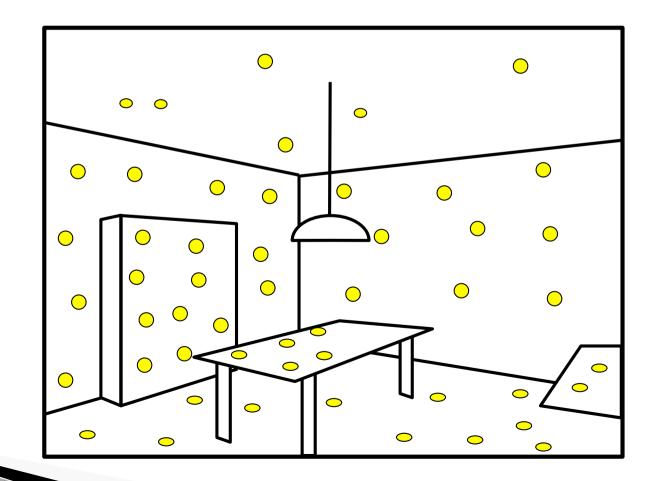
Photon mapping

Pre-computation: throw rays from the light sources



Photon mapping

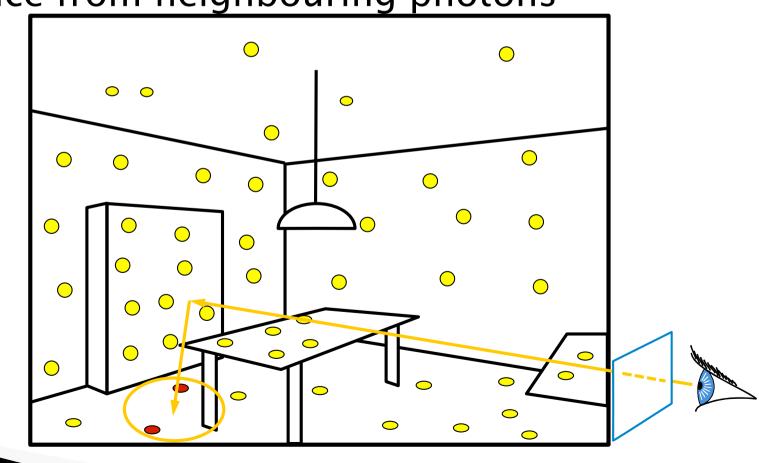
Store photons (position + intensity + direction) on the geometry or inside an data structure

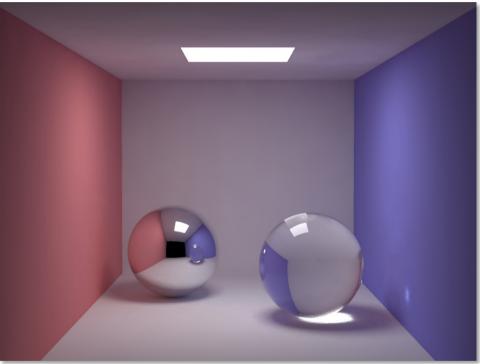


Photon mapping - rendering

Throw primary rays

 Radiance for secondary rays by gathering radiance from neighbouring photons





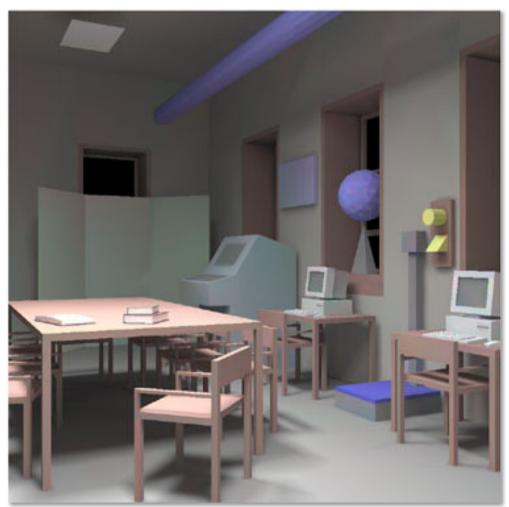
Photon map

Rendu final

- ▶ Jensen (1996)
 - Direct visualization of the photon map: 6min

- ▶ Jensen (1996)
 - Final gather pass: + 51 mn

- ▶ Walter (1998)
 - Global Illumination: 28h
 - Interactive rendering

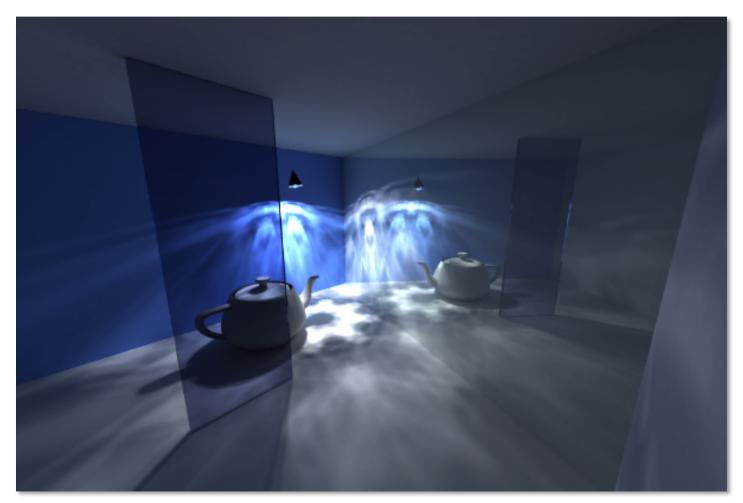


Mitsuba (http://www.mitsuba-renderer.org/)

Caustics

Separate Photon map for refraction

V-Ray 1.5 for 3ds Max



5 millions photons from a single light source

Yafray: ray tracer open source with Photon Mapping, integrated with Blender.

http://en.wikipedia.org/wiki/POV-Ray

Photon Mapping: summary

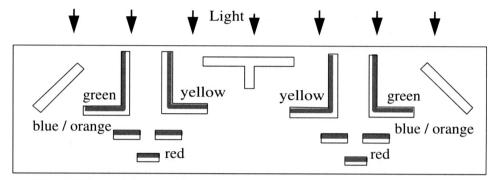
- Pre-computation view-point independent
 - Storage on the surfaces
- Good representation for caustics
- Noisy: smoothing based on the samples
 - Reconstruction of the radiance function
- Can be coded in two passes with a ray-tracer
 - One pass for each direction

Radiosity

Radiosity

Taking into account all interreflections

Sculpture by John Ferren



All visible surfaces, white.

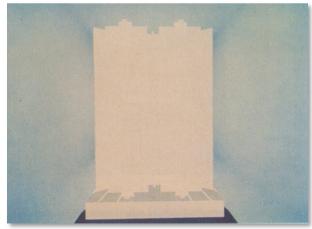


Photo Ray-tracing

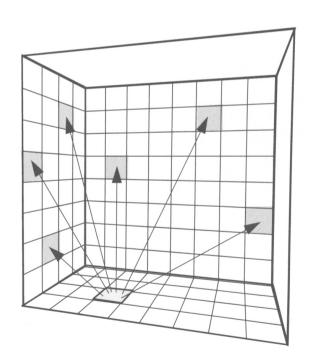
Radiosité

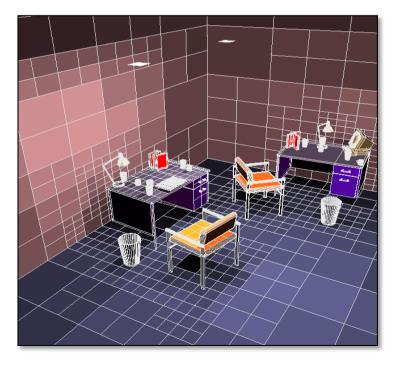
Radiosity methods [1984]

- Hypothesis: diffuse materials
- Radiance, BRDF... are independent from the direction
- Simplifies the rendering equation
- Radiosity method:
 - Discretize this equation in object space
 - (viewpoint independent)
 - Solve the discretized equation
 - Render the scene using the illumination

L'équation de radiosité

 Environnement échantillonné sous la forme de patchs discrets, de taille finie, émettant et réfléchissant la lumière uniformément sur leurs surface (choix d'une base)





Simplification and discretization

$$L(x,d) = E(x,d) + \int \rho(x,d,d') \ v(x,x') \ G(x,x') \ dA$$

Simplified:

$$B(\mathbf{x}) = E(\mathbf{x}) + \rho_{x} \int B(\mathbf{x'}) \, \mathbf{v}(\mathbf{x}, \mathbf{x'}) \, G(\mathbf{x}, \mathbf{x'}) \, dA$$

Discrete version:

Form factor

$$B_i = E_i + \rho_i \sum_j F_{ji} B_j A_j / A_i$$

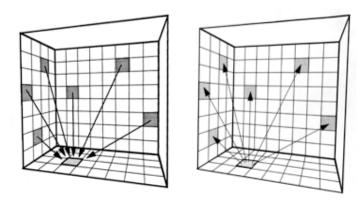
- B_i , B_i : radiosity for patches i et j (in W/m2)
- E_i: emission for patch i
- F_{ji} form factor, characterizes proportion of energy leaving patch j arriving on i
- A_i et A_i: areas for patches i and j

Matrix representation

Grouping together all elements:

$$\begin{bmatrix}
B_0 \\
B_n
\end{bmatrix} = \begin{bmatrix}
E_0 \\
E_n
\end{bmatrix} + \begin{bmatrix}
\rho_i F_{ji}
\end{bmatrix} \begin{bmatrix}
B_0 \\
B_n
\end{bmatrix} \iff B = E + MB$$

- Matrix equation, to solve iteratively
 - Relaxation methods (gathering / shooting)



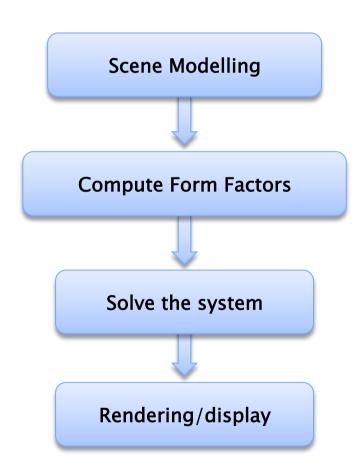
Form factor

Form factor F_{ij} from a patch A_i towards a patch A_j :

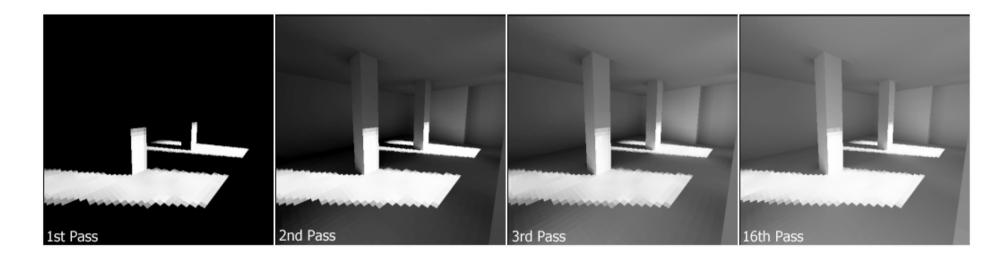
$$F_{ij} = \int_{A_i} \int_{A_j} v(x, x') \frac{\cos(\theta)\cos(\theta')}{\pi r^2} dxdx'$$

- Problem: computing this integral (4D). No analytic solution
 - Approximated solutions: projection on a hemisphere or a hemicube.

▶ Pipeline for computing global illumination :

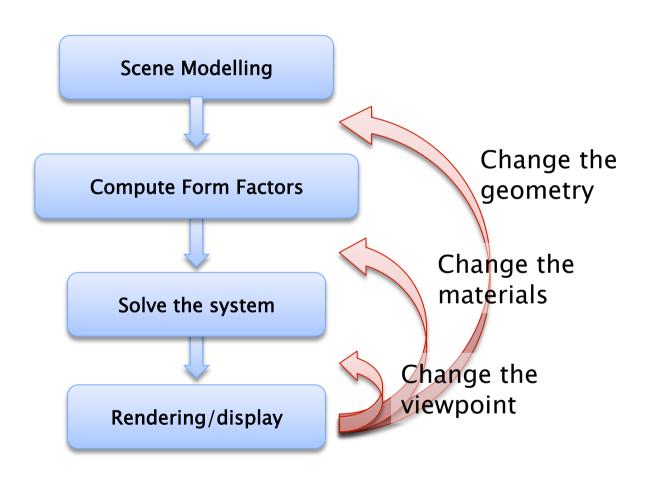


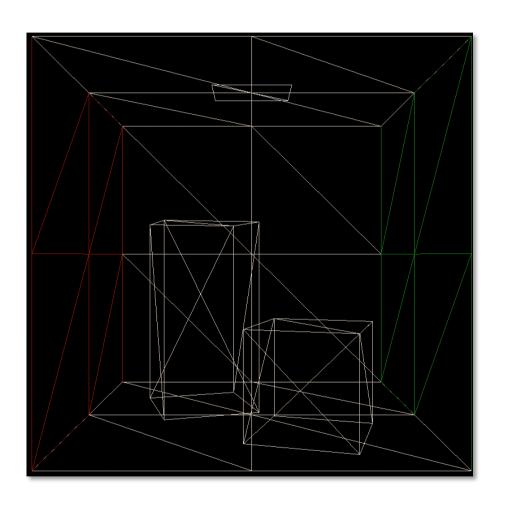
Iterative solving:

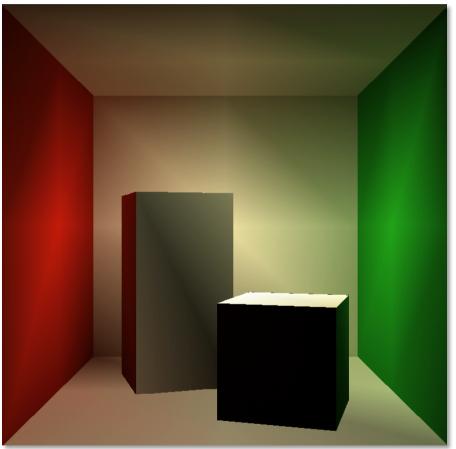


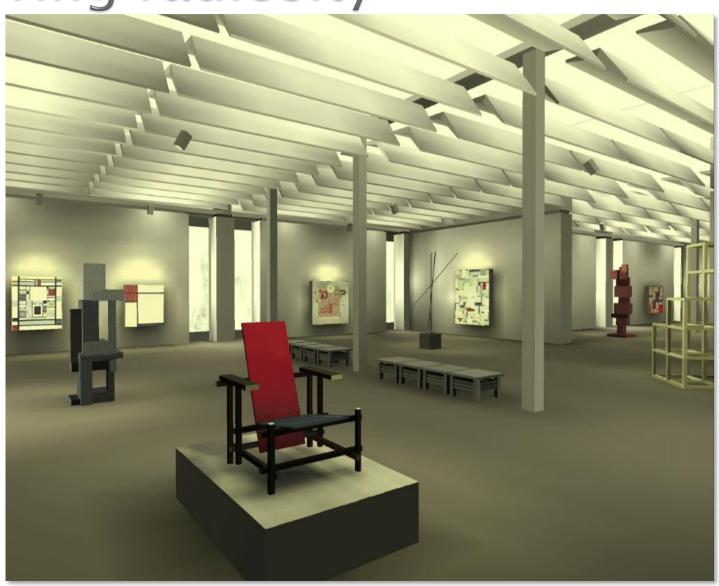
Question – 1 mn

- What must be recomputed if something changes in the scene?
 - Geometry
 - Reflectance properties
 - Viewpoint









Museum simulation. Cornell University. 50,000 patches.

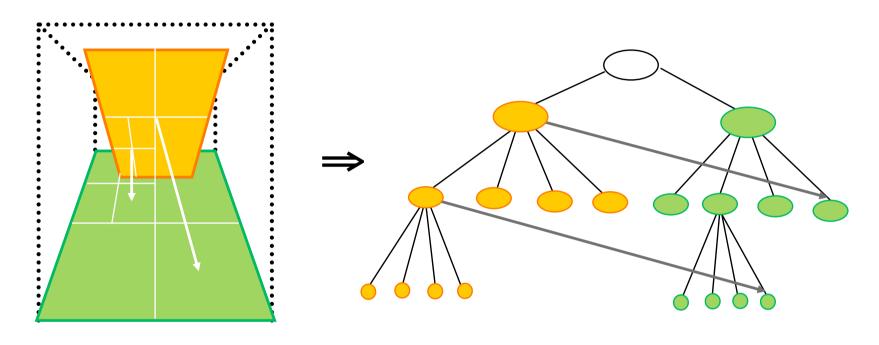
Radiosity: pros

- Computations are viewpoint independent
- Okay for complex scenes
- Solving light exchanges
 - Interactive rendering

Radiosity: cons

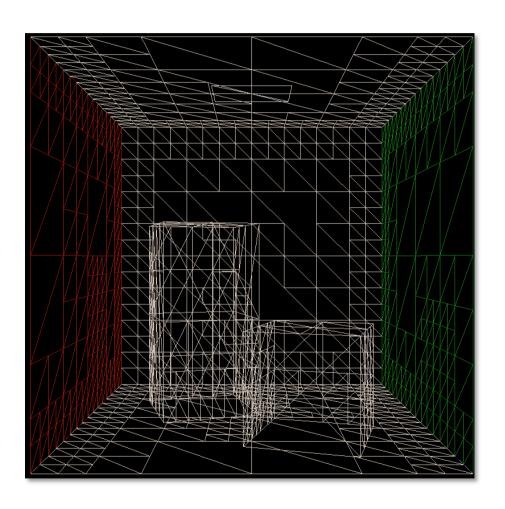
- Memory cost
- Only diffuse materials
 - « final gather » using Ray-Tracing
- Meshing
 - Discontinuity mesh
- Long pre-computations
 - Possible speed-up: hierarchical radiosity

Hierarchical radiosity [Hanrahan91]

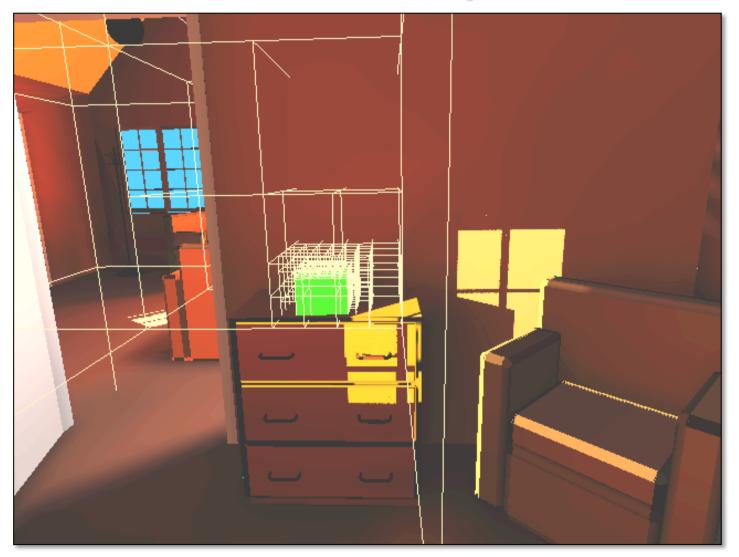


- Computation at different hierarchical levels
- Push-pull

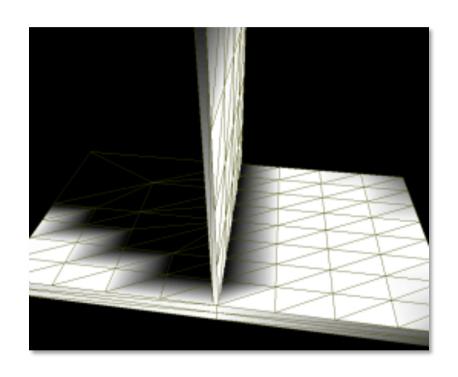
Hierarchical radiosity



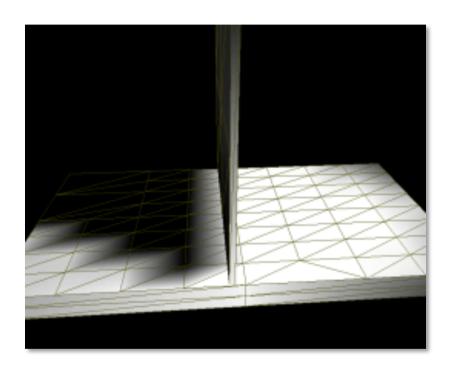
Hierarchical radiosity



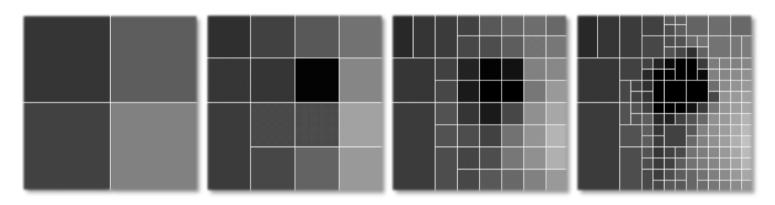
Mesh quality



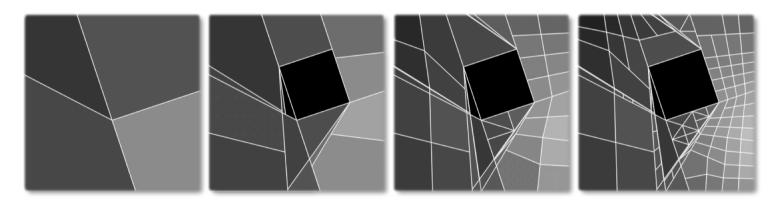
Shadow leak



Light leak



Regular subdivision

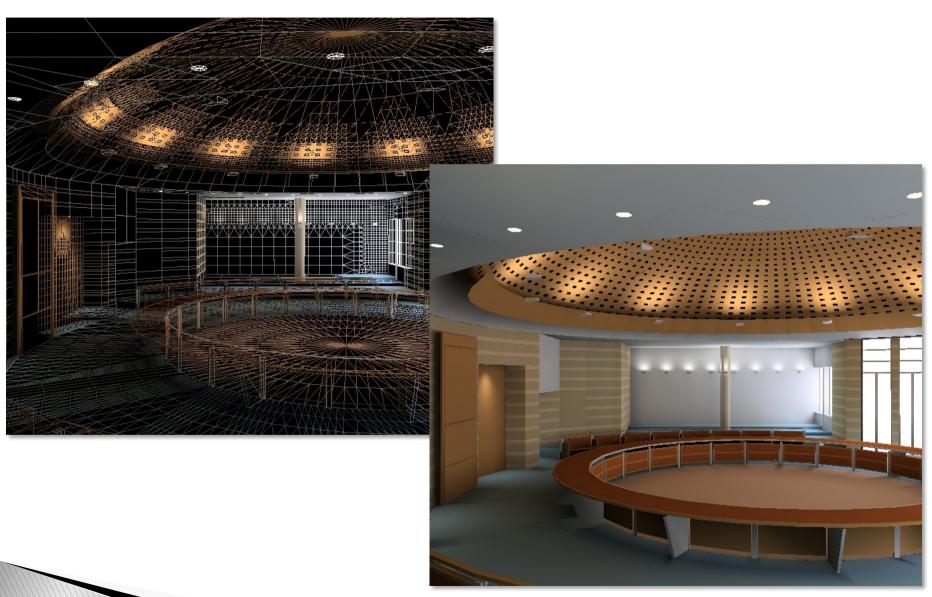


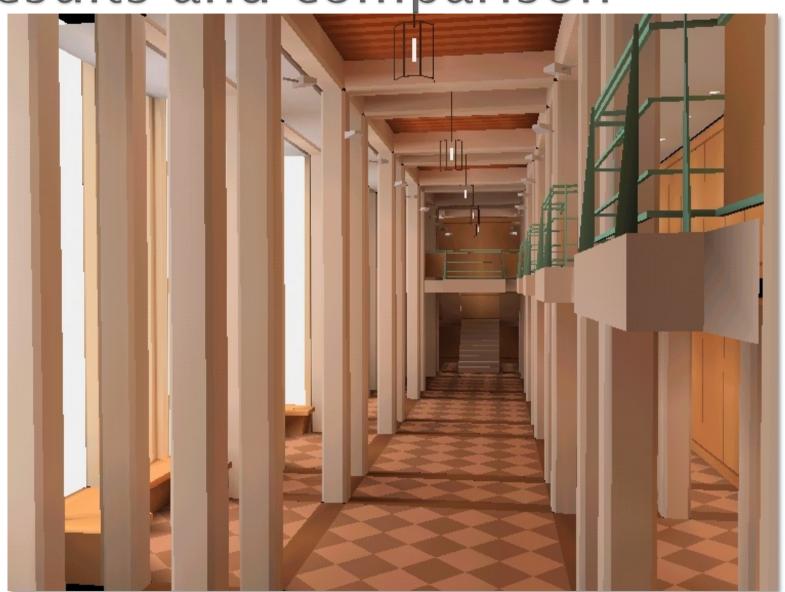
Discontinuity meshing

Résultats et comparaison

Rendu Scan-line. (3DS MAX)

Rendu en radiosité et lancer de rayons.





Radiosity today

- Used by architects (Lightscape)
- Used to precompute diffuse lighting for some video games (light maps)
- Not an active research topic anymore
 - Monte–Carlo is more generic
 - But pre-computed radiance transfer is similar (used e.g. in Max Payne 2)