

Texture mapping

World/object coordinates

2D/3D

2D mapping

3D mapping

Sources: scanners, raytracers

Mapping one object pixel to a texture pixel

Object parameterization

Planar map shape

Planar map shape

Planar map shape

Cylindrical map shape

Cylindrical map shape

Cylindrical map shape

Spherical map shape

Spherical map shape

Spherical map shape

Cube map shape

Cube map shape

What do we get from the texture?

Parametric patches

Parametric patches

Parametric patches

Parameterized cube

Non-linear mapping

Triangular meshes

- One texture coordinate per vertex
- Regular parameterization of the mesh
- Requirements:
 - Continuous
 - Small angular deformations
 - Small area deformations
 - Covers the entire mesh
 - In practice: at most two

Triangular mesh example

Singularities (poles)

Examples

- Input = normal map (nx, ny, nz)
- Local frame:
 - -z = geometric normal
 - $-x_{i,y}$ = tangent, bitangent

Follow the texture coordinates!

• Example : note how blue (z) is dominant

- Shading normal : local frame
- Light, eye: global frame
- Move everything to the same frame
- [TBN]: transformation matrix
 - To inverse, or not to inverse?

- Note:
 - textures in $[0,1]^3$
 - normals in $[-1,1]^3$

Displacement mapping

Displacement mapping: how?

- Not in the fragment shader
 - Except towards the inside?
 - Candidate for tesselation shader

- Easier with other rendering methods
 - ray-tracing

Relief textures

displacement mapping extreme case

Relief textures

- How?
- Warp textures before mapping

Or follow rays in a height field

Polygons = convex hull

Raytracing/Env. mapping

Raytracing/Env. mapping

- Texture = distant light
- Parameterization: cube, sphere

- Incoming ray + reflection = outgoing ray
- Query texture in this direction

Example environment map (spherical parameterization)

- Can also work with refracted rays
- Only one interface
 - huge approximation

Aliasing

Under-sampling

Need pre-filtering

Multiple samples per pixel

Mipmaps

1:1 4:1 16:1 64:1 256:1 ...

Aliasing

- Texture + distance = aliasing
 - Looks bad
 - Multi-sampling is not enough

- Color textures: can pre-filter
- Normal maps, height maps:
 - Pre-filtering doesn't make sense
 - Open research problem

3d textures

3D parameterization

Examples: distance to a plane

Distance to a line

Color ramps, sinus...

Color-table

Noise is useful

lattice noise

lattice

gradient

Simplex noise

- Same as gradient noise
- Use a simplex instead of a cube
- 3D: tetrahedron + gradient interpolation
- Underlying structure is invisible

http://en.wikipedia.org/wiki/Simplex_noise

Frequency

5 octaves together

5 octaves together

Noise

- Parameters:
 - Number of octaves
 - Amplitude of first octave
 - Persistence: ratio amplitude octaves
 - Geometric sequence
 - Lacunarity: ratio of octave periods

Noise

- Often compared to salt in cooking
- Only noise: not very good
- 3D textures without noise: a bit bland

- Combination textures 3D + noise
 - Really interesting

Procedural textures

Perturbations

Procedural textures + noise

- Not limited to color
- Normals, material parameters...
- Regular structure + a bit of noise
 - Wood, bricks, floor tiles...

 Filtering / anti-aliasing : harder, but necessary

Procedural textures for object definition

All together...

